AI Gateway Configuration
Configure providers, endpoints, and advanced settings for your MLflow AI Gateway.
Provider Configurations
Configure endpoints for different LLM providers using these YAML examples:
- OpenAI
- Azure OpenAI
- Anthropic
- AWS Bedrock
- Cohere
- MosaicAI
- Databricks
- MLflow Models
endpoints:
- name: gpt4-chat
endpoint_type: llm/v1/chat
model:
provider: openai
name: gpt-4
config:
openai_api_key: $OPENAI_API_KEY
openai_api_base: https://api.openai.com/v1 # Optional
openai_organization: your_org_id # Optional
endpoints:
- name: azure-chat
endpoint_type: llm/v1/chat
model:
provider: azuread
name: gpt-35-turbo
config:
openai_api_key: $AZURE_OPENAI_API_KEY
openai_api_base: https://your-resource.openai.azure.com/
openai_api_version: "2023-05-15"
openai_deployment_name: your-deployment-name
endpoints:
- name: claude-chat
endpoint_type: llm/v1/chat
model:
provider: anthropic
name: claude-2
config:
anthropic_api_key: $ANTHROPIC_API_KEY
endpoints:
- name: bedrock-chat
endpoint_type: llm/v1/chat
model:
provider: bedrock
name: anthropic.claude-instant-v1
config:
aws_config:
aws_access_key_id: $AWS_ACCESS_KEY_ID
aws_secret_access_key: $AWS_SECRET_ACCESS_KEY
aws_region: us-east-1
endpoints:
- name: cohere-completions
endpoint_type: llm/v1/completions
model:
provider: cohere
name: command
config:
cohere_api_key: $COHERE_API_KEY
- name: cohere-embeddings
endpoint_type: llm/v1/embeddings
model:
provider: cohere
name: embed-english-v2.0
config:
cohere_api_key: $COHERE_API_KEY
endpoints:
- name: mosaicai-chat
endpoint_type: llm/v1/chat
model:
provider: mosaicai
name: llama2-70b-chat
config:
mosaicai_api_key: $MOSAICAI_API_KEY
Databricks Foundation Models APIs are compatible with the OpenAI Chat Completions API, so you can use them with openai
provider in the AI Gateway. Specify the endpoint name (e.g., databricks-claude-sonnet-4
) in the name
field and set the host and token as OpenAI API key and base URL respectively.
endpoints:
- name: databricks-chat
endpoint_type: llm/v1/chat
model:
provider: openai
name: databricks-claude-sonnet-4
config:
openai_api_key: $DATABRICKS_TOKEN
openai_api_base: https://your-workspace.cloud.databricks.com/serving-endpoints/ # Replace with your Databricks workspace URL
endpoints:
- name: custom-model
endpoint_type: llm/v1/chat
model:
provider: mlflow-model-serving
name: my-model
config:
model_server_url: http://localhost:5001
Environment Variables
Store API keys as environment variables for security:
# OpenAI
export OPENAI_API_KEY=sk-...
# Azure OpenAI
export AZURE_OPENAI_API_KEY=your-azure-key
export AZURE_OPENAI_ENDPOINT=https://your-resource.openai.azure.com/
# Anthropic
export ANTHROPIC_API_KEY=sk-ant-...
# AWS Bedrock
export AWS_ACCESS_KEY_ID=AKIA...
export AWS_SECRET_ACCESS_KEY=...
export AWS_REGION=us-east-1
# Cohere
export COHERE_API_KEY=...
Advanced Configuration
Rate Limiting
Configure rate limits per endpoint:
endpoints:
- name: rate-limited-chat
endpoint_type: llm/v1/chat
model:
provider: openai
name: gpt-3.5-turbo
config:
openai_api_key: $OPENAI_API_KEY
limit:
renewal_period: minute
calls: 100 # max calls per renewal period
Model Parameters
Set default model parameters:
endpoints:
- name: configured-chat
endpoint_type: llm/v1/chat
model:
provider: openai
name: gpt-3.5-turbo
config:
openai_api_key: $OPENAI_API_KEY
temperature: 0.7
max_tokens: 1000
top_p: 0.9
Multiple Endpoints
Configure multiple endpoints for different use cases:
endpoints:
# Fast, cost-effective endpoint
- name: fast-chat
endpoint_type: llm/v1/chat
model:
provider: openai
name: gpt-3.5-turbo
config:
openai_api_key: $OPENAI_API_KEY
# High-quality endpoint
- name: quality-chat
endpoint_type: llm/v1/chat
model:
provider: openai
name: gpt-4
config:
openai_api_key: $OPENAI_API_KEY
# Embeddings endpoint
- name: embeddings
endpoint_type: llm/v1/embeddings
model:
provider: openai
name: text-embedding-ada-002
config:
openai_api_key: $OPENAI_API_KEY
Dynamic Configuration Updates
The AI Gateway supports hot-reloading of configurations without server restart. Simply update your config.yaml file and changes are detected automatically.
Security Best Practices
API Key Management
- Never commit API keys to version control
- Use environment variables for all sensitive credentials
- Rotate keys regularly and update environment variables
- Use separate keys for development and production
Network Security
- Use HTTPS in production with proper TLS certificates
- Implement authentication and authorization layers
- Configure firewalls to restrict access to the gateway
- Monitor and log all gateway requests for audit trails
Configuration Security
# Secure configuration example
endpoints:
- name: production-chat
endpoint_type: llm/v1/chat
model:
provider: openai
name: gpt-4
config:
openai_api_key: $OPENAI_API_KEY # From environment
limit:
renewal_period: minute
calls: 1000
Next Steps
Now that your providers are configured, learn how to use and integrate your gateway: