"""
The ``mlflow.catboost`` module provides an API for logging and loading CatBoost models.
This module exports CatBoost models with the following flavors:
CatBoost (native) format
This is the main flavor that can be loaded back into CatBoost.
:py:mod:`mlflow.pyfunc`
Produced for use by generic pyfunc-based deployment tools and batch inference.
.. _CatBoost:
https://catboost.ai/docs/concepts/python-reference_catboost.html
.. _CatBoost.save_model:
https://catboost.ai/docs/concepts/python-reference_catboost_save_model.html
.. _CatBoostClassifier:
https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html
.. _CatBoostRanker:
https://catboost.ai/docs/concepts/python-reference_catboostranker.html
.. _CatBoostRegressor:
https://catboost.ai/docs/concepts/python-reference_catboostregressor.html
"""
import contextlib
import logging
import os
from typing import Any, Optional
import yaml
import mlflow
from mlflow import pyfunc
from mlflow.models import Model, ModelInputExample, ModelSignature
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.signature import _infer_signature_from_input_example
from mlflow.models.utils import _save_example
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils.docstring_utils import LOG_MODEL_PARAM_DOCS, format_docstring
from mlflow.utils.environment import (
_CONDA_ENV_FILE_NAME,
_CONSTRAINTS_FILE_NAME,
_PYTHON_ENV_FILE_NAME,
_REQUIREMENTS_FILE_NAME,
_mlflow_conda_env,
_process_conda_env,
_process_pip_requirements,
_PythonEnv,
_validate_env_arguments,
)
from mlflow.utils.file_utils import get_total_file_size, write_to
from mlflow.utils.model_utils import (
_add_code_from_conf_to_system_path,
_get_flavor_configuration,
_validate_and_copy_code_paths,
_validate_and_prepare_target_save_path,
)
from mlflow.utils.requirements_utils import _get_pinned_requirement
FLAVOR_NAME = "catboost"
_MODEL_TYPE_KEY = "model_type"
_SAVE_FORMAT_KEY = "save_format"
_MODEL_BINARY_KEY = "data"
_MODEL_BINARY_FILE_NAME = "model.cb"
_logger = logging.getLogger(__name__)
[docs]def get_default_pip_requirements():
"""
Returns:
A list of default pip requirements for MLflow Models produced by this flavor.
Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment
that, at minimum, contains these requirements.
"""
return [_get_pinned_requirement("catboost")]
[docs]def get_default_conda_env():
"""
Returns:
The default Conda environment for MLflow Models produced by calls to
:func:`save_model()` and :func:`log_model()`.
"""
return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements())
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def save_model(
cb_model,
path,
conda_env=None,
code_paths=None,
mlflow_model=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
**kwargs,
):
"""Save a CatBoost model to a path on the local file system.
Args:
cb_model: CatBoost model (an instance of `CatBoost`_, `CatBoostClassifier`_,
`CatBoostRanker`_, or `CatBoostRegressor`_) to be saved.
path: Local path where the model is to be saved.
conda_env: {{ conda_env }}
code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
signature: {{ signature }}
input_example: {{ input_example }}
pip_requirements: {{ pip_requirements }}
extra_pip_requirements: {{ extra_pip_requirements }}
metadata: {{ metadata }}
kwargs: kwargs to pass to `CatBoost.save_model`_ method.
"""
import catboost as cb
_validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)
path = os.path.abspath(path)
_validate_and_prepare_target_save_path(path)
code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)
if mlflow_model is None:
mlflow_model = Model()
saved_example = _save_example(mlflow_model, input_example, path)
if signature is None and saved_example is not None:
wrapped_model = _CatboostModelWrapper(cb_model)
signature = _infer_signature_from_input_example(saved_example, wrapped_model)
elif signature is False:
signature = None
if signature is not None:
mlflow_model.signature = signature
if metadata is not None:
mlflow_model.metadata = metadata
model_data_path = os.path.join(path, _MODEL_BINARY_FILE_NAME)
cb_model.save_model(model_data_path, **kwargs)
model_bin_kwargs = {_MODEL_BINARY_KEY: _MODEL_BINARY_FILE_NAME}
pyfunc.add_to_model(
mlflow_model,
loader_module="mlflow.catboost",
conda_env=_CONDA_ENV_FILE_NAME,
python_env=_PYTHON_ENV_FILE_NAME,
code=code_dir_subpath,
**model_bin_kwargs,
)
flavor_conf = {
_MODEL_TYPE_KEY: cb_model.__class__.__name__,
_SAVE_FORMAT_KEY: kwargs.get("format", "cbm"),
**model_bin_kwargs,
}
mlflow_model.add_flavor(
FLAVOR_NAME, catboost_version=cb.__version__, code=code_dir_subpath, **flavor_conf
)
if size := get_total_file_size(path):
mlflow_model.model_size_bytes = size
mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
if conda_env is None:
if pip_requirements is None:
default_reqs = get_default_pip_requirements()
# To ensure `_load_pyfunc` can successfully load the model during the dependency
# inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
inferred_reqs = mlflow.models.infer_pip_requirements(
path,
FLAVOR_NAME,
fallback=default_reqs,
)
default_reqs = sorted(set(inferred_reqs).union(default_reqs))
else:
default_reqs = None
conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
default_reqs,
pip_requirements,
extra_pip_requirements,
)
else:
conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)
with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
yaml.safe_dump(conda_env, stream=f, default_flow_style=False)
# Save `constraints.txt` if necessary
if pip_constraints:
write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))
# Save `requirements.txt`
write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
_PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def log_model(
cb_model,
artifact_path,
conda_env=None,
code_paths=None,
registered_model_name=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
**kwargs,
):
"""Log a CatBoost model as an MLflow artifact for the current run.
Args:
cb_model: CatBoost model (an instance of `CatBoost`_, `CatBoostClassifier`_,
`CatBoostRanker`_, or `CatBoostRegressor`_) to be saved.
artifact_path: Run-relative artifact path.
conda_env: {{ conda_env }}
code_paths: A list of local filesystem paths to Python file dependencies (or directories
containing file dependencies). These files are *prepended* to the system
path when the model is loaded.
registered_model_name: This argument may change or be removed in a
future release without warning. If given, create a model
version under ``registered_model_name``, also creating a
registered model if one with the given name does not exist.
signature: {{ signature }}
input_example: {{ input_example }}
await_registration_for: Number of seconds to wait for the model version to finish
being created and is in ``READY`` status. By default, the function
waits for five minutes. Specify 0 or None to skip waiting.
pip_requirements: {{ pip_requirements }}
extra_pip_requirements: {{ extra_pip_requirements }}
metadata: {{ metadata }}
kwargs: kwargs to pass to `CatBoost.save_model`_ method.
Returns:
A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the
metadata of the logged model.
"""
return Model.log(
artifact_path=artifact_path,
flavor=mlflow.catboost,
registered_model_name=registered_model_name,
cb_model=cb_model,
conda_env=conda_env,
code_paths=code_paths,
signature=signature,
input_example=input_example,
await_registration_for=await_registration_for,
pip_requirements=pip_requirements,
extra_pip_requirements=extra_pip_requirements,
metadata=metadata,
**kwargs,
)
def _init_model(model_type):
from catboost import CatBoost, CatBoostClassifier, CatBoostRegressor
model_types = {c.__name__: c for c in [CatBoost, CatBoostClassifier, CatBoostRegressor]}
with contextlib.suppress(ImportError):
from catboost import CatBoostRanker
model_types[CatBoostRanker.__name__] = CatBoostRanker
if model_type not in model_types:
raise TypeError(
f"Invalid model type: '{model_type}'. Must be one of {list(model_types.keys())}"
)
return model_types[model_type]()
def _load_model(path, model_type, save_format):
model = _init_model(model_type)
model.load_model(os.path.abspath(path), save_format)
return model
def _load_pyfunc(path):
"""Load PyFunc implementation. Called by ``pyfunc.load_model``.
Args:
path: Local filesystem path to the MLflow Model with the ``catboost`` flavor.
"""
flavor_conf = _get_flavor_configuration(
model_path=os.path.dirname(path), flavor_name=FLAVOR_NAME
)
return _CatboostModelWrapper(
_load_model(path, flavor_conf.get(_MODEL_TYPE_KEY), flavor_conf.get(_SAVE_FORMAT_KEY))
)
[docs]def load_model(model_uri, dst_path=None):
"""Load a CatBoost model from a local file or a run.
Args:
model_uri: The location, in URI format, of the MLflow model. For example:
- ``/Users/me/path/to/local/model``
- ``relative/path/to/local/model``
- ``s3://my_bucket/path/to/model``
- ``runs:/<mlflow_run_id>/run-relative/path/to/model``
For more information about supported URI schemes, see
`Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html#
artifact-locations>`_.
dst_path: The local filesystem path to which to download the model artifact.
This directory must already exist. If unspecified, a local output
path will be created.
Returns:
A CatBoost model (an instance of `CatBoost`_, `CatBoostClassifier`_, `CatBoostRanker`_,
or `CatBoostRegressor`_)
"""
local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path)
flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
_add_code_from_conf_to_system_path(local_model_path, flavor_conf)
cb_model_file_path = os.path.join(
local_model_path, flavor_conf.get(_MODEL_BINARY_KEY, _MODEL_BINARY_FILE_NAME)
)
return _load_model(
cb_model_file_path, flavor_conf.get(_MODEL_TYPE_KEY), flavor_conf.get(_SAVE_FORMAT_KEY)
)
class _CatboostModelWrapper:
def __init__(self, cb_model):
self.cb_model = cb_model
def get_raw_model(self):
"""
Returns the underlying model.
"""
return self.cb_model
def predict(self, dataframe, params: Optional[dict[str, Any]] = None):
"""
Args:
dataframe: Model input data.
params: Additional parameters to pass to the model for inference.
Returns:
Model predictions.
"""
return self.cb_model.predict(dataframe)
# TODO: Support autologging