import os
import cloudpickle
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils.annotations import experimental
from mlflow.utils.model_utils import (
_add_code_from_conf_to_system_path,
_get_flavor_configuration,
)
_DEFAULT_MODEL_PATH = "data/model.pkl"
def _load_model(model_uri, dst_path=None):
import dspy
local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path)
flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name="dspy")
_add_code_from_conf_to_system_path(local_model_path, flavor_conf)
model_path = flavor_conf.get("model_path", _DEFAULT_MODEL_PATH)
with open(os.path.join(local_model_path, model_path), "rb") as f:
loaded_wrapper = cloudpickle.load(f)
# Set the global dspy settings and return the dspy wrapper.
dspy.settings.configure(**loaded_wrapper.dspy_settings)
return loaded_wrapper
[docs]@experimental
def load_model(model_uri, dst_path=None):
"""
Load a Dspy model from a run.
This function will also set the global dspy settings `dspy.settings` by the saved settings.
Args:
model_uri: The location, in URI format, of the MLflow model. For example:
- ``/Users/me/path/to/local/model``
- ``relative/path/to/local/model``
- ``s3://my_bucket/path/to/model``
- ``runs:/<mlflow_run_id>/run-relative/path/to/model``
- ``mlflow-artifacts:/path/to/model``
For more information about supported URI schemes, see
`Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html#
artifact-locations>`_.
dst_path: The local filesystem path to utilize for downloading the model artifact.
This directory must already exist if provided. If unspecified, a local output
path will be created.
Returns:
An `dspy.module` instance, representing the dspy model.
"""
return _load_model(model_uri, dst_path).model
def _load_pyfunc(path):
return _load_model(path)