Source code for mlflow.entities.trace_data

from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional

from mlflow.entities import Span


[docs]@dataclass class TraceData: """A container object that holds the spans data of a trace. Args: spans: List of spans that are part of the trace. request: Input data for the entire trace. Equivalent to the input of the root span but added for ease of access. Stored as a JSON string. response: Output data for the entire trace. Equivalent to the output of the root span. Stored as a JSON string. """ spans: List[Span] = field(default_factory=list) request: Optional[str] = None response: Optional[str] = None
[docs] @classmethod def from_dict(cls, d): if not isinstance(d, dict): raise TypeError(f"TraceData.from_dict() expects a dictionary. Got: {type(d).__name__}") return cls( request=d.get("request"), response=d.get("response"), spans=[Span.from_dict(span) for span in d.get("spans", [])], )
[docs] def to_dict(self) -> Dict[str, Any]: return { "spans": [span.to_dict() for span in self.spans], "request": self.request, "response": self.response, }