Source code for mlflow.evaluation.assessment

import numbers
import time
from typing import Any, Optional, Union

from mlflow.entities._mlflow_object import _MlflowObject
from mlflow.entities.assessment import Assessment as AssessmentEntity
from mlflow.entities.assessment_source import AssessmentSource
from mlflow.exceptions import MlflowException
from mlflow.protos.databricks_pb2 import INVALID_PARAMETER_VALUE
from mlflow.utils.annotations import experimental


[docs]@experimental class Assessment(_MlflowObject): """ Assessment data associated with an evaluation result. Assessment is an enriched output from the evaluation that provides more context, such as the rationale, source, and metadata for the evaluation result. Example: .. code-block:: python from mlflow.evaluation import Assessment assessment = Assessment( name="answer_correctness", value=0.5, rationale="The answer is partially correct.", ) """ def __init__( self, name: str, source: Optional[AssessmentSource] = None, value: Optional[Union[bool, float, str]] = None, rationale: Optional[str] = None, metadata: Optional[dict[str, Any]] = None, error_code: Optional[str] = None, error_message: Optional[str] = None, ): """Construct a new Assessment instance. Args: name: The name of the piece of assessment. source: The source of the assessment (AssessmentSource instance). value: The value of the assessment. This can be a boolean, numeric, or string value. rationale: The rationale / justification for the value. metadata: Additional metadata for the assessment, e.g. the index of the chunk in the retrieved documents that the assessment applies to. error_code: An error code representing any issues encountered during the assessment. error_message: A descriptive error message representing any issues encountered during the assessment. """ if (value is None) == (error_code is None): raise MlflowException( "Exactly one of value or error_code must be specified for an assessment.", INVALID_PARAMETER_VALUE, ) if value is not None and error_message is not None: raise MlflowException( "error_message cannot be specified when value is specified.", INVALID_PARAMETER_VALUE, ) self._name = name self._source = source self._value = value self._rationale = rationale self._metadata = metadata or {} self._error_code = error_code self._error_message = error_message self._boolean_value = None self._numeric_value = None self._string_value = None if isinstance(value, bool): self._boolean_value = value elif isinstance(value, numbers.Number): self._numeric_value = float(value) elif value is not None: self._string_value = str(value) @property def name(self) -> str: """The name of the assessment.""" return self._name @property def value(self) -> Union[bool, float, str]: """The assessment value.""" return self._value @property def rationale(self) -> Optional[str]: """The rationale / justification for the assessment.""" return self._rationale @property def source(self) -> Optional[AssessmentSource]: """The source of the assessment.""" return self._source @property def metadata(self) -> dict[str, Any]: """The metadata associated with the assessment.""" return self._metadata @property def error_code(self) -> Optional[str]: """The error code.""" return self._error_code @property def error_message(self) -> Optional[str]: """The error message.""" return self._error_message def __eq__(self, __o): if isinstance(__o, self.__class__): return self.to_dictionary() == __o.to_dictionary() return False
[docs] def to_dictionary(self) -> dict[str, Any]: return { "name": self.name, "source": self.source.to_dictionary() if self.source is not None else None, "value": self.value, "rationale": self.rationale, "metadata": self.metadata, "error_code": self.error_code, "error_message": self.error_message, }
[docs] @classmethod def from_dictionary(cls, assessment_dict: dict[str, Any]) -> "Assessment": """ Create an Assessment object from a dictionary. Args: assessment_dict (dict): Dictionary containing assessment information. Returns: Assessment: The Assessment object created from the dictionary. """ return cls( name=assessment_dict["name"], source=AssessmentSource.from_dictionary(assessment_dict["source"]), value=assessment_dict.get("value"), rationale=assessment_dict.get("rationale"), metadata=assessment_dict.get("metadata"), error_code=assessment_dict.get("error_code"), error_message=assessment_dict.get("error_message"), )
def _to_entity(self, evaluation_id: str) -> AssessmentEntity: # We require that the source be specified for an assessment before sending it to the backend if self._source is None: raise MlflowException( message=( f"Assessment source must be specified." f"Got empty source for assessment with name {self._name}" ), error_code=INVALID_PARAMETER_VALUE, ) return AssessmentEntity( evaluation_id=evaluation_id, name=self._name, source=self._source, timestamp=int(time.time() * 1000), boolean_value=self._boolean_value, numeric_value=self._numeric_value, string_value=self._string_value, rationale=self._rationale, metadata=self._metadata, error_code=self._error_code, error_message=self._error_message, )