Source code for mlflow.metrics.base

from dataclasses import dataclass
from typing import Optional, Union

import numpy as np

from mlflow.utils.annotations import experimental
from mlflow.utils.validation import _is_numeric


def standard_aggregations(scores):
    return {
        "mean": np.mean(scores),
        "variance": np.var(scores),
        "p90": np.percentile(scores, 90),
    }


[docs]@experimental @dataclass class MetricValue: """ The value of a metric. Args: scores: The value of the metric per row justifications: The justification (if applicable) for the respective score aggregate_results: A dictionary mapping the name of the aggregation to its value """ scores: Optional[Union[list[str], list[float]]] = None justifications: Optional[list[str]] = None aggregate_results: Optional[dict[str, float]] = None def __post_init__(self): if ( self.aggregate_results is None and isinstance(self.scores, (list, tuple)) and all(_is_numeric(score) for score in self.scores) ): self.aggregate_results = standard_aggregations(self.scores)