Source code for mlflow.mleap

"""
The ``mlflow.mleap`` module provides an API for saving Spark MLLib models using the
`MLeap <https://github.com/combust/mleap>`_ persistence mechanism.

.. warning:

    The mleap flavor is deprecated and will be removed in a future release of MLflow.

.. note:

    You cannot load the MLeap model flavor in Python; you must download it using the
    Java API method ``downloadArtifacts(String runId)`` and load the model
    using the method ``MLeapLoader.loadPipeline(String modelRootPath)``.
"""

import logging
import os
import pathlib
import sys
import traceback

import mlflow
from mlflow.exceptions import MlflowException
from mlflow.models import Model, ModelInputExample, ModelSignature
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.utils import _save_example
from mlflow.utils import reraise
from mlflow.utils.annotations import deprecated, keyword_only
from mlflow.utils.file_utils import path_to_local_file_uri
from mlflow.utils.os import is_windows

FLAVOR_NAME = "mleap"

_logger = logging.getLogger(__name__)


[docs]@deprecated(alternative="mlflow.onnx", since="2.6.0") @keyword_only def log_model( spark_model, sample_input, artifact_path, registered_model_name=None, signature: ModelSignature = None, input_example: ModelInputExample = None, metadata=None, ): """ Log a Spark MLLib model in MLeap format as an MLflow artifact for the current run. The logged model will have the MLeap flavor. .. note:: You cannot load the MLeap model flavor in Python; you must download it using the Java API method ``downloadArtifacts(String runId)`` and load the model using the method ``MLeapLoader.loadPipeline(String modelRootPath)``. Args: spark_model: Spark PipelineModel to be saved. This model must be MLeap-compatible and cannot contain any custom transformers. sample_input: Sample PySpark DataFrame input that the model can evaluate. This is required by MLeap for data schema inference. artifact_path: Run-relative artifact path. registered_model_name: If given, create a model version under ``registered_model_name``, also creating a registered model if one with the given name does not exist. signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) input_example: {{ input_example }} metadata: {{ metadata }} Returns: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the metadata of the logged model. .. code-block:: python :caption: Example import mlflow import mlflow.mleap import pyspark from pyspark.ml import Pipeline from pyspark.ml.classification import LogisticRegression from pyspark.ml.feature import HashingTF, Tokenizer # training DataFrame training = spark.createDataFrame( [ (0, "a b c d e spark", 1.0), (1, "b d", 0.0), (2, "spark f g h", 1.0), (3, "hadoop mapreduce", 0.0), ], ["id", "text", "label"], ) # testing DataFrame test_df = spark.createDataFrame( [(4, "spark i j k"), (5, "l m n"), (6, "spark hadoop spark"), (7, "apache hadoop")], ["id", "text"], ) # Create an MLlib pipeline tokenizer = Tokenizer(inputCol="text", outputCol="words") hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features") lr = LogisticRegression(maxIter=10, regParam=0.001) pipeline = Pipeline(stages=[tokenizer, hashingTF, lr]) model = pipeline.fit(training) # log parameters mlflow.log_param("max_iter", 10) mlflow.log_param("reg_param", 0.001) # log the Spark MLlib model in MLeap format mlflow.mleap.log_model( spark_model=model, sample_input=test_df, artifact_path="mleap-model" ) """ return Model.log( artifact_path=artifact_path, flavor=mlflow.mleap, spark_model=spark_model, sample_input=sample_input, registered_model_name=registered_model_name, signature=signature, input_example=input_example, metadata=metadata, )
[docs]@deprecated(alternative="mlflow.onnx", since="2.6.0") @keyword_only def save_model( spark_model, sample_input, path, mlflow_model=None, signature: ModelSignature = None, input_example: ModelInputExample = None, metadata=None, ): """ Save a Spark MLlib PipelineModel in MLeap format at a local path. The saved model will have the MLeap flavor. .. note:: You cannot load the MLeap model flavor in Python; you must download it using the Java API method ``downloadArtifacts(String runId)`` and load the model using the method ``MLeapLoader.loadPipeline(String modelRootPath)``. Args: spark_model: Spark PipelineModel to be saved. This model must be MLeap-compatible and cannot contain any custom transformers. sample_input: Sample PySpark DataFrame input that the model can evaluate. This is required by MLeap for data schema inference. path: Local path where the model is to be saved. mlflow_model: :py:mod:`mlflow.models.Model` to which this flavor is being added. signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) input_example: {{ input_example }} metadata: {{ metadata }} """ if mlflow_model is None: mlflow_model = Model() add_to_model( mlflow_model=mlflow_model, path=path, spark_model=spark_model, sample_input=sample_input ) if signature is not None: mlflow_model.signature = signature if input_example is not None: _save_example(mlflow_model, input_example, path) if metadata is not None: mlflow_model.metadata = metadata mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
[docs]@deprecated(alternative="mlflow.onnx", since="2.6.0") @keyword_only def add_to_model(mlflow_model, path, spark_model, sample_input): """ Add the MLeap flavor to an existing MLflow model. Args: mlflow_model: :py:mod:`mlflow.models.Model` to which this flavor is being added. path: Path of the model to which this flavor is being added. spark_model: Spark PipelineModel to be saved. This model must be MLeap-compatible and cannot contain any custom transformers. sample_input: Sample PySpark DataFrame input that the model can evaluate. This is required by MLeap for data schema inference. """ import mleap.version # This import statement adds `serializeToBundle` and `deserializeFromBundle` to `Transformer`: # https://github.com/combust/mleap/blob/37f6f61634798118e2c2eb820ceeccf9d234b810/python/mleap/pyspark/spark_support.py#L32-L33 from mleap.pyspark.spark_support import SimpleSparkSerializer # noqa: F401 from py4j.protocol import Py4JError from pyspark.ml.pipeline import PipelineModel from pyspark.sql import DataFrame if not isinstance(spark_model, PipelineModel): raise Exception("Not a PipelineModel. MLeap can save only PipelineModels.") if sample_input is None: raise Exception("A sample input must be specified in order to add the MLeap flavor.") if not isinstance(sample_input, DataFrame): raise Exception( f"The sample input must be a PySpark dataframe of type `{DataFrame.__module__}`" ) # MLeap's model serialization routine requires an absolute output path path = os.path.abspath(path) mleap_path_full = os.path.join(path, "mleap") mleap_datapath_sub = os.path.join("mleap", "model") mleap_datapath_full = os.path.join(path, mleap_datapath_sub) if os.path.exists(mleap_path_full): raise Exception(f"MLeap model data path already exists at: {mleap_path_full}") os.makedirs(mleap_path_full) dataset = spark_model.transform(sample_input) if is_windows(): # NB: On Windows, MLeap requires the "file://" prefix in order to correctly # parse the model data path, even though the result is not a correct URI. # None of "file:", "file:/", or "file:///", which would be canonically correct, # work properly model_path = "file://" + str(pathlib.Path(mleap_datapath_full).as_posix()) else: model_path = path_to_local_file_uri(mleap_datapath_full) try: spark_model.serializeToBundle(path=model_path, dataset=dataset) except Py4JError: _handle_py4j_error( MLeapSerializationException, "MLeap encountered an error while serializing the model. Ensure that the model is" " compatible with MLeap (i.e does not contain any custom transformers).", ) try: mleap_version = mleap.version.__version__ _logger.warning( "Detected old mleap version %s. Support for logging models in mleap format with " "mleap versions 0.15.0 and below is deprecated and will be removed in a future " "MLflow release. Please upgrade to a newer mleap version.", mleap_version, ) except AttributeError: mleap_version = mleap.version mlflow_model.add_flavor(FLAVOR_NAME, mleap_version=mleap_version, model_data=mleap_datapath_sub)
def _handle_py4j_error(reraised_error_type, reraised_error_text): """ Logs information about an exception that is currently being handled and reraises it with the specified error text as a message. """ traceback.print_exc() tb = sys.exc_info()[2] reraise(reraised_error_type, reraised_error_type(reraised_error_text), tb)
[docs]class MLeapSerializationException(MlflowException): """Exception thrown when a model or DataFrame cannot be serialized in MLeap format."""