Source code for mlflow.models.resources

import os
from abc import ABC, abstractmethod
from enum import Enum
from typing import Any

import yaml

DEFAULT_API_VERSION = "1"


[docs]class ResourceType(Enum): """ Enum to define the different types of resources needed to serve a model. """ UC_CONNECTION = "uc_connection" VECTOR_SEARCH_INDEX = "vector_search_index" SERVING_ENDPOINT = "serving_endpoint" SQL_WAREHOUSE = "sql_warehouse" FUNCTION = "function" GENIE_SPACE = "genie_space" TABLE = "table"
[docs]class Resource(ABC): """ Base class for defining the resources needed to serve a model. Args: type (ResourceType): The resource type. target_uri (str): The target URI where these resources are hosted. """ @property @abstractmethod def type(self) -> ResourceType: """ The resource type (must be defined by subclasses). """ @property @abstractmethod def target_uri(self) -> str: """ The target URI where the resource is hosted (must be defined by subclasses). """
[docs] @abstractmethod def to_dict(self): """ Convert the resource to a dictionary. Subclasses must implement this method. """
[docs] @classmethod @abstractmethod def from_dict(cls, data: dict[str, str]): """ Convert the dictionary to a Resource. Subclasses must implement this method. """
def __eq__(self, other: Any): if not isinstance(other, Resource): return False return self.to_dict() == other.to_dict()
class DatabricksResource(Resource, ABC): """ Base class to define all the Databricks resources to serve a model. Example usage: https://docs.databricks.com/en/generative-ai/log-agent.html#specify-resources-for-pyfunc-or-langchain-agent """ @property def target_uri(self) -> str: return "databricks" class DatabricksUCConnection(DatabricksResource): """ Define a Databricks UC Connection used to serve a model. Args: connection_name (str): The name of the databricks UC connection used to create the tool which was used to build the model. """ @property def type(self) -> ResourceType: return ResourceType.UC_CONNECTION def __init__(self, connection_name: str): self.connection_name = connection_name def to_dict(self): return {self.type.value: [{"name": self.connection_name}]} @classmethod def from_dict(cls, data: dict[str, str]): return cls(connection_name=data["name"]) class DatabricksServingEndpoint(DatabricksResource): """ Define Databricks LLM endpoint resource to serve a model. Args: endpoint_name (str): The name of all the databricks endpoints used by the model. """ @property def type(self) -> ResourceType: return ResourceType.SERVING_ENDPOINT def __init__(self, endpoint_name: str): self.endpoint_name = endpoint_name def to_dict(self): return {self.type.value: [{"name": self.endpoint_name}]} @classmethod def from_dict(cls, data: dict[str, str]): return cls(endpoint_name=data["name"]) class DatabricksVectorSearchIndex(DatabricksResource): """ Define Databricks vector search index name resource to serve a model. Args: index_name (str): The name of all the databricks vector search index names used by the model. """ @property def type(self) -> ResourceType: return ResourceType.VECTOR_SEARCH_INDEX def __init__(self, index_name: str): self.index_name = index_name def to_dict(self): return {self.type.value: [{"name": self.index_name}]} @classmethod def from_dict(cls, data: dict[str, str]): return cls(index_name=data["name"]) class DatabricksSQLWarehouse(DatabricksResource): """ Define Databricks sql warehouse resource to serve a model. Args: warehouse_id (str): The id of the sql warehouse used by the model """ @property def type(self) -> ResourceType: return ResourceType.SQL_WAREHOUSE def __init__(self, warehouse_id: str): self.warehouse_id = warehouse_id def to_dict(self): return {self.type.value: [{"name": self.warehouse_id}]} @classmethod def from_dict(cls, data: dict[str, str]): return cls(warehouse_id=data["name"]) class DatabricksFunction(DatabricksResource): """ Define Databricks UC Function to serve a model. Args: function_name (str): The name of the function used by the model """ @property def type(self) -> ResourceType: return ResourceType.FUNCTION def __init__(self, function_name: str): self.function_name = function_name def to_dict(self): return {self.type.value: [{"name": self.function_name}]} @classmethod def from_dict(cls, data: dict[str, str]): return cls(function_name=data["name"]) class DatabricksGenieSpace(DatabricksResource): """ Define a Databricks Genie Space to serve a model. Args: genie_space_id (str): The genie space id """ @property def type(self) -> ResourceType: return ResourceType.GENIE_SPACE def __init__(self, genie_space_id: str): self.genie_space_id = genie_space_id def to_dict(self): return {self.type.value: [{"name": self.genie_space_id}]} @classmethod def from_dict(cls, data: dict[str, str]): return cls(genie_space_id=data["name"]) class DatabricksTable(DatabricksResource): """ Defines a Databricks Unity Catalog (UC) Table, which establishes table dependencies for Model Serving. This table will be referenced in Agent Model Serving endpoints, where an agent queries a SQL table via either Genie or UC Functions. Args: table_name (str): The name of the table used by the model """ @property def type(self) -> ResourceType: return ResourceType.TABLE def __init__(self, table_name: str): self.table_name = table_name def to_dict(self): return {self.type.value: [{"name": self.table_name}]} @classmethod def from_dict(cls, data: dict[str, str]): return cls(table_name=data["name"]) def _get_resource_class_by_type(target_uri: str, resource_type: ResourceType): resource_classes = { "databricks": { ResourceType.UC_CONNECTION.value: DatabricksUCConnection, ResourceType.SERVING_ENDPOINT.value: DatabricksServingEndpoint, ResourceType.VECTOR_SEARCH_INDEX.value: DatabricksVectorSearchIndex, ResourceType.SQL_WAREHOUSE.value: DatabricksSQLWarehouse, ResourceType.FUNCTION.value: DatabricksFunction, ResourceType.GENIE_SPACE.value: DatabricksGenieSpace, ResourceType.TABLE.value: DatabricksTable, } } resource = resource_classes.get(target_uri) if resource is None: raise ValueError(f"Unsupported target URI: {target_uri}") return resource.get(resource_type) class _ResourceBuilder: """ Private builder class to build the resources dictionary. """ @staticmethod def from_resources( resources: list[Resource], api_version: str = DEFAULT_API_VERSION ) -> dict[str, dict[ResourceType, list[dict]]]: resource_dict = {} for resource in resources: resource_data = resource.to_dict() for resource_type, values in resource_data.items(): target_dict = resource_dict.setdefault(resource.target_uri, {}) target_list = target_dict.setdefault(resource_type, []) target_list.extend(values) resource_dict["api_version"] = api_version return resource_dict @staticmethod def from_dict(data) -> dict[str, dict[ResourceType, list[dict]]]: resources = [] api_version = data.pop("api_version") if api_version == "1": for target_uri, config in data.items(): for resource_type, values in config.items(): resource_class = _get_resource_class_by_type(target_uri, resource_type) if resource_class: resources.extend(resource_class.from_dict(value) for value in values) else: raise ValueError(f"Unsupported resource type: {resource_type}") else: raise ValueError(f"Unsupported API version: {api_version}") return _ResourceBuilder.from_resources(resources, api_version) @staticmethod def from_yaml_file(path: str) -> dict[str, dict[ResourceType, list[dict]]]: if not os.path.exists(path): raise OSError(f"No such file or directory: '{path}'") path = os.path.abspath(path) with open(path) as file: data = yaml.safe_load(file) return _ResourceBuilder.from_dict(data)