Source code for mlflow.recipes.recipe

import abc
import logging
import os
from typing import List, Optional

from mlflow.exceptions import MlflowException
from mlflow.protos.databricks_pb2 import BAD_REQUEST, INTERNAL_ERROR, INVALID_PARAMETER_VALUE
from mlflow.recipes import dag_help_strings
from mlflow.recipes.artifacts import Artifact
from mlflow.recipes.step import BaseStep, StepClass, StepStatus
from mlflow.recipes.utils import (
    get_recipe_config,
    get_recipe_name,
    get_recipe_root_path,
)
from mlflow.recipes.utils.execution import (
    clean_execution_state,
    get_or_create_base_execution_directory,
    get_step_output_path,
    run_recipe_step,
)
from mlflow.recipes.utils.step import display_html
from mlflow.utils.class_utils import _get_class_from_string

_logger = logging.getLogger(__name__)


[docs]class BaseRecipe: """ Base Recipe """ def __init__(self, recipe_root_path: str, profile: str) -> None: """ Recipe base class. Args: recipe_root_path: String path to the directory under which the recipe template such as recipe.yaml, profiles/{profile}.yaml and steps/{step_name}.py are defined. profile: String specifying the profile name, with which {recipe_root_path}/profiles/{profile}.yaml is read and merged with recipe.yaml to generate the configuration to run the recipe. """ self._recipe_root_path = recipe_root_path self._run_args = {} self._profile = profile self._name = get_recipe_name(recipe_root_path) # self._steps contains concatenated ordered lists of step objects representing multiple # disjoint DAGs. To keep it in sync with the underlying config file, it should be reloaded # from config files using self._resolve_recipe_steps() at the beginning of __init__(), # run(), and inspect(), and should not reload it elsewhere. self._steps = self._resolve_recipe_steps() self._recipe = get_recipe_config(self._recipe_root_path, self._profile).get("recipe") @property def name(self) -> str: """Returns the name of the recipe.""" return self._name @property def profile(self) -> str: """ Returns the profile under which the recipe and its steps will execute. """ return self._profile
[docs] def run(self, step: Optional[str] = None) -> None: """ Runs a step in the recipe, or the entire recipe if a step is not specified. Args: step: String name to run a step within the recipe. The step and its dependencies will be run sequentially. If a step is not specified, the entire recipe is executed. Returns: None """ # TODO Record performance here. self._steps = self._resolve_recipe_steps() target_step = self._get_step(step) if step else self._get_default_step() last_executed_step = run_recipe_step( self._recipe_root_path, self._get_subgraph_for_target_step(target_step), target_step, self._recipe, ) self.inspect(last_executed_step.name) # Verify that the step execution succeeded and throw if it didn't. last_executed_step_output_directory = get_step_output_path( self._recipe_root_path, last_executed_step.name, "" ) last_executed_step_state = last_executed_step.get_execution_state( last_executed_step_output_directory ) if last_executed_step_state.status != StepStatus.SUCCEEDED: last_step_error_mesg = ( f"The following error occurred while running step '{last_executed_step}':\n" f"{last_executed_step_state.stack_trace}\n" f"Last step status: '{last_executed_step_state.status}'\n" ) if step is not None: raise MlflowException( f"Failed to run step '{step}' of recipe '{self.name}':\n{last_step_error_mesg}", error_code=BAD_REQUEST, ) else: raise MlflowException( f"Failed to run recipe '{self.name}':\n{last_step_error_mesg}", error_code=BAD_REQUEST, )
[docs] def inspect(self, step: Optional[str] = None) -> None: """ Displays main output from a step, or a recipe DAG if no step is specified. Args: step: String name to display a step output within the recipe. If a step is not specified, the DAG of the recipe is shown instead. Returns: None """ self._steps = self._resolve_recipe_steps() if not step: display_html(html_file_path=self._get_recipe_dag_file()) else: output_directory = get_step_output_path(self._recipe_root_path, step, "") self._get_step(step).inspect(output_directory)
[docs] def clean(self, step: Optional[str] = None) -> None: """ Removes the outputs of the specified step from the cache, or removes the cached outputs of all steps if no particular step is specified. After cached outputs are cleaned for a particular step, the step will be re-executed in its entirety the next time it is invoked via ``BaseRecipe.run()``. Args: step: String name of the step to clean within the recipe. If not specified, cached outputs are removed for all recipe steps. """ to_clean = self._steps if not step else [self._get_step(step)] clean_execution_state(self._recipe_root_path, to_clean)
def _get_step(self, step_name) -> BaseStep: """Returns a step class object from the recipe.""" steps = self._steps step_names = [s.name for s in steps] if step_name not in step_names: raise MlflowException( f"Step {step_name} not found in recipe. Available steps are {step_names}" ) return self._steps[step_names.index(step_name)] def _get_subgraph_for_target_step(self, target_step: BaseStep) -> List[BaseStep]: """ Return a list of step objects representing a connected DAG containing the target_step. The returned list should be a sublist of self._steps. """ subgraph = [] if target_step.step_class == StepClass.UNKNOWN: return subgraph for step in self._steps: if target_step.step_class() == step.step_class(): subgraph.append(step) return subgraph @abc.abstractmethod def _get_default_step(self) -> BaseStep: """ Defines which step to run if no step is specified. Concrete recipe class should implement this method. """ @abc.abstractmethod def _get_step_classes(self): """ Returns a list of step classes defined in the recipe. Concrete recipe class should implement this method. """ def _get_recipe_dag_file(self) -> str: """ Returns absolute path to the recipe DAG representation HTML file. """ import jinja2 j2_env = jinja2.Environment(loader=jinja2.FileSystemLoader(os.path.dirname(__file__))) recipe_dag_template = j2_env.get_template("resources/recipe_dag_template.html").render( { "recipe_yaml_help": { "help_string_type": "yaml", "help_string": dag_help_strings.RECIPE_YAML, }, "ingest_step_help": { "help_string": dag_help_strings.INGEST_STEP, "help_string_type": "text", }, "ingest_user_code_help": { "help_string": dag_help_strings.INGEST_USER_CODE, "help_string_type": "python", }, "ingested_data_help": { "help_string": dag_help_strings.INGESTED_DATA, "help_string_type": "text", }, "split_step_help": { "help_string": dag_help_strings.SPLIT_STEP, "help_string_type": "text", }, "split_user_code_help": { "help_string": dag_help_strings.SPLIT_USER_CODE, "help_string_type": "python", }, "training_data_help": { "help_string": dag_help_strings.TRAINING_DATA, "help_string_type": "text", }, "validation_data_help": { "help_string": dag_help_strings.VALIDATION_DATA, "help_string_type": "text", }, "test_data_help": { "help_string": dag_help_strings.TEST_DATA, "help_string_type": "text", }, "transform_step_help": { "help_string": dag_help_strings.TRANSFORM_STEP, "help_string_type": "text", }, "transform_user_code_help": { "help_string": dag_help_strings.TRANSFORM_USER_CODE, "help_string_type": "python", }, "fitted_transformer_help": { "help_string": dag_help_strings.FITTED_TRANSFORMER, "help_string_type": "text", }, "transformed_training_and_validation_data_help": { "help_string": dag_help_strings.TRANSFORMED_TRAINING_AND_VALIDATION_DATA, "help_string_type": "text", }, "train_step_help": { "help_string": dag_help_strings.TRAIN_STEP, "help_string_type": "text", }, "train_user_code_help": { "help_string": dag_help_strings.TRAIN_USER_CODE, "help_string_type": "python", }, "fitted_model_help": { "help_string": dag_help_strings.FITTED_MODEL, "help_string_type": "text", }, "mlflow_run_help": { "help_string": dag_help_strings.MLFLOW_RUN, "help_string_type": "text", }, "predicted_training_data_help": { "help_string": dag_help_strings.PREDICTED_TRAINING_DATA, "help_string_type": "text", }, "custom_metrics_user_code_help": { "help_string": dag_help_strings.CUSTOM_METRICS_USER_CODE, "help_string_type": "python", }, "evaluate_step_help": { "help_string": dag_help_strings.EVALUATE_STEP, "help_string_type": "text", }, "model_validation_status_help": { "help_string": dag_help_strings.MODEL_VALIDATION_STATUS, "help_string_type": "text", }, "register_step_help": { "help_string": dag_help_strings.REGISTER_STEP, "help_string_type": "text", }, "registered_model_version_help": { "help_string": dag_help_strings.REGISTERED_MODEL_VERSION, "help_string_type": "text", }, "ingest_scoring_step_help": { "help_string": dag_help_strings.INGEST_SCORING_STEP, "help_string_type": "text", }, "ingested_scoring_data_help": { "help_string": dag_help_strings.INGESTED_SCORING_DATA, "help_string_type": "text", }, "predict_step_help": { "help_string": dag_help_strings.PREDICT_STEP, "help_string_type": "text", }, "scored_data_help": { "help_string": dag_help_strings.SCORED_DATA, "help_string_type": "text", }, } ) recipe_dag_file = os.path.join( get_or_create_base_execution_directory(self._recipe_root_path), "recipe_dag.html" ) with open(recipe_dag_file, "w") as f: f.write(recipe_dag_template) return recipe_dag_file def _resolve_recipe_steps(self) -> List[BaseStep]: """ Constructs and returns all recipe step objects from the recipe configuration. """ recipe_config = get_recipe_config(self._recipe_root_path, self._profile) recipe_config["profile"] = self.profile return [ s.from_recipe_config(recipe_config, self._recipe_root_path) for s in self._get_step_classes() ]
[docs] def get_artifact(self, artifact_name: str): """ Read an artifact from recipe output. artifact names can be obtained from `Recipe.inspect()` or `Recipe.run()` output. Returns None if the specified artifact is not found. Raise an error if the artifact is not supported. """ return self._get_artifact(artifact_name).load()
def _get_artifact(self, artifact_name: str) -> Artifact: """ Read an Artifact object from recipe output. artifact names can be obtained from `Recipe.inspect()` or `Recipe.run()` output. Returns None if the specified artifact is not found. Raise an error if the artifact is not supported. """ for step in self._steps: for artifact in step.get_artifacts(): if artifact.name() == artifact_name: return artifact raise MlflowException( f"The artifact with name '{artifact_name}' is not supported.", error_code=INVALID_PARAMETER_VALUE, )
[docs]class Recipe: """ A factory class that creates an instance of a recipe for a particular ML problem (e.g. regression, classification) or MLOps task (e.g. batch scoring) based on the current working directory and supplied configuration. .. code-block:: python :caption: Example import os from mlflow.recipes import Recipe os.chdir("~/recipes-regression-template") regression_recipe = Recipe(profile="local") regression_recipe.run(step="train") """
[docs] def __new__(cls, profile: str): """ Creates an instance of an MLflow Recipe for a particular ML problem or MLOps task based on the current working directory and supplied configuration. The current working directory must be the root directory of an MLflow Recipe repository or a subdirectory of an MLflow Recipe repository. Args: profile: The name of the profile to use for configuring the problem-specific or task-specific recipe. Profiles customize the configuration of one or more recipe steps, and recipe executions with different profiles often produce different results. Returns: A recipe for a particular ML problem or MLOps task. For example, an instance of `RegressionRecipe <https://github.com/mlflow/recipes-regression-template>`_ for regression problems. .. code-block:: python import os from mlflow.recipes import Recipe os.chdir("~/recipes-regression-template") regression_recipe = Recipe(profile="local") regression_recipe.run(step="train") """ if not profile: raise MlflowException( "A profile name must be provided to construct a valid Recipe object.", error_code=INVALID_PARAMETER_VALUE, ) from None recipe_root_path = get_recipe_root_path() if " " in recipe_root_path: raise MlflowException( message=( "Recipe directory path cannot contain spaces. Please move or rename your " f"recipe directory. Current path: {recipe_root_path}" ), error_code=INVALID_PARAMETER_VALUE, ) from None recipe_config = get_recipe_config(recipe_root_path=recipe_root_path, profile=profile) recipe = recipe_config.get("recipe") if recipe is None: raise MlflowException( "The `recipe` property needs to be defined in the `recipe.yaml` file. " "For example: `recipe: regression/v1`", error_code=INVALID_PARAMETER_VALUE, ) from None recipe_path = recipe.replace("/", ".").replace("@", ".") class_name = f"mlflow.recipes.{recipe_path}.RecipeImpl" try: recipe_class_module = _get_class_from_string(class_name) except Exception as e: if isinstance(e, ModuleNotFoundError): raise MlflowException( f"Failed to find Recipe {class_name}." f"Please check the correctness of the recipe template setting: {recipe}", error_code=INVALID_PARAMETER_VALUE, ) from None else: raise MlflowException( f"Failed to construct Recipe {class_name}", error_code=INTERNAL_ERROR, ) from e recipe_name = get_recipe_name(recipe_root_path) _logger.info(f"Creating MLflow Recipe '{recipe_name}' with profile: '{profile}'") return recipe_class_module(recipe_root_path, profile)