Source code for mlflow.spark

"""
The ``mlflow.spark`` module provides an API for logging and loading Spark MLlib models. This module
exports Spark MLlib models with the following flavors:

Spark MLlib (native) format
    Allows models to be loaded as Spark Transformers for scoring in a Spark session.
    Models with this flavor can be loaded as PySpark PipelineModel objects in Python.
    This is the main flavor and is always produced.
:py:mod:`mlflow.pyfunc`
    Supports deployment outside of Spark by instantiating a SparkContext and reading
    input data as a Spark DataFrame prior to scoring. Also supports deployment in Spark
    as a Spark UDF. Models with this flavor can be loaded as Python functions
    for performing inference. This flavor is always produced.
:py:mod:`mlflow.mleap`
    Enables high-performance deployment outside of Spark by leveraging MLeap's
    custom dataframe and pipeline representations. Models with this flavor *cannot* be loaded
    back as Python objects. Rather, they must be deserialized in Java using the
    ``mlflow/java`` package. This flavor is produced only if you specify
    MLeap-compatible arguments.
"""

import logging
import os
import posixpath
import re
import shutil
from typing import Any, Optional

import yaml
from packaging.version import Version

import mlflow
from mlflow import environment_variables, mleap, pyfunc
from mlflow.environment_variables import MLFLOW_DFS_TMP
from mlflow.exceptions import MlflowException
from mlflow.models import Model, ModelInputExample, ModelSignature
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.signature import _LOG_MODEL_INFER_SIGNATURE_WARNING_TEMPLATE
from mlflow.models.utils import _Example, _save_example
from mlflow.protos.databricks_pb2 import INVALID_PARAMETER_VALUE
from mlflow.store.artifact.databricks_artifact_repo import DatabricksArtifactRepository
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
from mlflow.tracking.artifact_utils import (
    _download_artifact_from_uri,
    _get_root_uri_and_artifact_path,
)
from mlflow.types.schema import SparkMLVector
from mlflow.utils import _get_fully_qualified_class_name, databricks_utils
from mlflow.utils.autologging_utils import autologging_integration, safe_patch
from mlflow.utils.class_utils import _get_class_from_string
from mlflow.utils.docstring_utils import LOG_MODEL_PARAM_DOCS, format_docstring
from mlflow.utils.environment import (
    _CONDA_ENV_FILE_NAME,
    _CONSTRAINTS_FILE_NAME,
    _PYTHON_ENV_FILE_NAME,
    _REQUIREMENTS_FILE_NAME,
    _mlflow_conda_env,
    _process_conda_env,
    _process_pip_requirements,
    _PythonEnv,
    _validate_env_arguments,
)
from mlflow.utils.file_utils import (
    TempDir,
    get_total_file_size,
    shutil_copytree_without_file_permissions,
    write_to,
)
from mlflow.utils.model_utils import (
    _add_code_from_conf_to_system_path,
    _get_flavor_configuration_from_uri,
    _validate_and_copy_code_paths,
)
from mlflow.utils.requirements_utils import _get_pinned_requirement
from mlflow.utils.uri import (
    append_to_uri_path,
    dbfs_hdfs_uri_to_fuse_path,
    generate_tmp_dfs_path,
    get_databricks_profile_uri_from_artifact_uri,
    is_databricks_acled_artifacts_uri,
    is_local_uri,
    is_valid_dbfs_uri,
)

FLAVOR_NAME = "spark"

_SPARK_MODEL_PATH_SUB = "sparkml"
_MLFLOWDBFS_SCHEME = "mlflowdbfs"


_logger = logging.getLogger(__name__)


[docs]def get_default_pip_requirements(is_spark_connect_model=False): """ Returns: A list of default pip requirements for MLflow Models produced by this flavor. Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment that, at minimum, contains these requirements. """ import pyspark # Strip the suffix from `dev` versions of PySpark, which are not # available for installation from Anaconda or PyPI pyspark_req_str = "pyspark[connect]" if is_spark_connect_model else "pyspark" pyspark_req = re.sub(r"(\.?)dev.*$", "", _get_pinned_requirement(pyspark_req_str)) reqs = [pyspark_req] if Version(pyspark.__version__) < Version("3.4"): # Versions of PySpark < 3.4 are incompatible with pandas >= 2 reqs.append("pandas<2") if is_spark_connect_model: reqs.extend( [ # Spark connect ML Model uses spark torch distributor to train model _get_pinned_requirement("torch"), # Spark connect ML Model saves feature transformers as sklearn transformer format. _get_pinned_requirement("scikit-learn", module="sklearn"), # Spark connect ML evaluators depend on torcheval package. _get_pinned_requirement("torcheval"), ] ) return reqs
[docs]def get_default_conda_env(is_spark_connect_model=False): """ Returns: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. This Conda environment contains the current version of PySpark that is installed on the caller's system. ``dev`` versions of PySpark are replaced with stable versions in the resulting Conda environment (e.g., if you are running PySpark version ``2.4.5.dev0``, invoking this method produces a Conda environment with a dependency on PySpark version ``2.4.5``). """ return _mlflow_conda_env( additional_pip_deps=get_default_pip_requirements( is_spark_connect_model=is_spark_connect_model ) )
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name="pyspark")) def log_model( spark_model, artifact_path, conda_env=None, code_paths=None, dfs_tmpdir=None, sample_input=None, registered_model_name=None, signature: ModelSignature = None, input_example: ModelInputExample = None, await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS, pip_requirements=None, extra_pip_requirements=None, metadata=None, ): """ Log a Spark MLlib model as an MLflow artifact for the current run. This uses the MLlib persistence format and produces an MLflow Model with the Spark flavor. Note: If no run is active, it will instantiate a run to obtain a run_id. Args: spark_model: Spark model to be saved - MLflow can only save descendants of pyspark.ml.Model or pyspark.ml.Transformer which implement MLReadable and MLWritable. .. Note:: The provided Spark model's `transform` method must generate one column named with "prediction", the column is used as MLflow pyfunc model output. Most Spark models generate the output column with "prediction" name that contains prediction labels by default. To set probability column as the output column for probabilistic classification models, you need to set "probabilityCol" param to "prediction" and set "predictionCol" param to "". (e.g. `model.setProbabilityCol("prediction").setPredictionCol("")`) artifact_path: Run relative artifact path. conda_env: {{ conda_env }} code_paths: {{ code_paths }} dfs_tmpdir: Temporary directory path on Distributed (Hadoop) File System (DFS) or local filesystem if running in local mode. The model is written in this destination and then copied into the model's artifact directory. This is necessary as Spark ML models read from and write to DFS if running on a cluster. If this operation completes successfully, all temporary files created on the DFS are removed. Defaults to ``/tmp/mlflow``. For models defined in `pyspark.ml.connect` module, this param is ignored. sample_input: A sample input used to add the MLeap flavor to the model. This must be a PySpark DataFrame that the model can evaluate. If ``sample_input`` is ``None``, the MLeap flavor is not added. registered_model_name: If given, create a model version under ``registered_model_name``, also creating a registered model if one with the given name does not exist. signature: A Model Signature object that describes the input and output Schema of the model. The model signature can be inferred using `infer_signature` function of `mlflow.models.signature`. Note if your Spark model contains Spark ML vector type input or output column, you should create ``SparkMLVector`` vector type for the column, `infer_signature` function can also infer ``SparkMLVector`` vector type correctly from Spark Dataframe input / output. When loading a Spark ML model with ``SparkMLVector`` vector type input as MLflow pyfunc model, it accepts ``Array[double]`` type input. MLflow internally converts the array into Spark ML vector and then invoke Spark model for inference. Similarly, if the model has vector type output, MLflow internally converts Spark ML vector output data into ``Array[double]`` type inference result. .. code-block:: python from mlflow.models import infer_signature from pyspark.sql.functions import col from pyspark.ml.classification import LogisticRegression from pyspark.ml.functions import array_to_vector import pandas as pd import mlflow train_df = spark.createDataFrame( [([3.0, 4.0], 0), ([5.0, 6.0], 1)], schema="features array<double>, label long" ).select(array_to_vector("features").alias("features"), col("label")) lor = LogisticRegression(maxIter=2) lor.setPredictionCol("").setProbabilityCol("prediction") lor_model = lor.fit(train_df) test_df = train_df.select("features") prediction_df = lor_model.transform(train_df).select("prediction") signature = infer_signature(test_df, prediction_df) with mlflow.start_run() as run: model_info = mlflow.spark.log_model( lor_model, "model", signature=signature, ) # The following signature is outputted: # inputs: # ['features': SparkML vector (required)] # outputs: # ['prediction': SparkML vector (required)] print(model_info.signature) loaded = mlflow.pyfunc.load_model(model_info.model_uri) test_dataset = pd.DataFrame({"features": [[1.0, 2.0]]}) # `loaded.predict` accepts `Array[double]` type input column, # and generates `Array[double]` type output column. print(loaded.predict(test_dataset)) input_example: {{ input_example }} await_registration_for: Number of seconds to wait for the model version to finish being created and is in ``READY`` status. By default, the function waits for five minutes. Specify 0 or None to skip waiting. pip_requirements: {{ pip_requirements }} extra_pip_requirements: {{ extra_pip_requirements }} metadata: {{ metadata }} Returns: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the metadata of the logged model. .. code-block:: python :caption: Example from pyspark.ml import Pipeline from pyspark.ml.classification import LogisticRegression from pyspark.ml.feature import HashingTF, Tokenizer training = spark.createDataFrame( [ (0, "a b c d e spark", 1.0), (1, "b d", 0.0), (2, "spark f g h", 1.0), (3, "hadoop mapreduce", 0.0), ], ["id", "text", "label"], ) tokenizer = Tokenizer(inputCol="text", outputCol="words") hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features") lr = LogisticRegression(maxIter=10, regParam=0.001) pipeline = Pipeline(stages=[tokenizer, hashingTF, lr]) model = pipeline.fit(training) mlflow.spark.log_model(model, "spark-model") """ _validate_model(spark_model) from pyspark.ml import PipelineModel if _is_spark_connect_model(spark_model): return Model.log( artifact_path=artifact_path, flavor=mlflow.spark, spark_model=spark_model, conda_env=conda_env, code_paths=code_paths, sample_input=sample_input, registered_model_name=registered_model_name, signature=signature, input_example=input_example, await_registration_for=await_registration_for, pip_requirements=pip_requirements, extra_pip_requirements=extra_pip_requirements, metadata=metadata, ) if not isinstance(spark_model, PipelineModel): spark_model = PipelineModel([spark_model]) run_id = mlflow.tracking.fluent._get_or_start_run().info.run_id run_root_artifact_uri = mlflow.get_artifact_uri() remote_model_path = None if _should_use_mlflowdbfs(run_root_artifact_uri): remote_model_path = append_to_uri_path( run_root_artifact_uri, artifact_path, _SPARK_MODEL_PATH_SUB ) mlflowdbfs_path = _mlflowdbfs_path(run_id, artifact_path) with databricks_utils.MlflowCredentialContext( get_databricks_profile_uri_from_artifact_uri(run_root_artifact_uri) ): try: spark_model.save(mlflowdbfs_path) except Exception as e: raise MlflowException("failed to save spark model via mlflowdbfs") from e # If the artifact URI is a local filesystem path, defer to Model.log() to persist the model, # since Spark may not be able to write directly to the driver's filesystem. For example, # writing to `file:/uri` will write to the local filesystem from each executor, which will # be incorrect on multi-node clusters. # If the artifact URI is not a local filesystem path we attempt to write directly to the # artifact repo via Spark. If this fails, we defer to Model.log(). elif is_local_uri(run_root_artifact_uri) or not _maybe_save_model( spark_model, append_to_uri_path(run_root_artifact_uri, artifact_path), ): return Model.log( artifact_path=artifact_path, flavor=mlflow.spark, spark_model=spark_model, conda_env=conda_env, code_paths=code_paths, dfs_tmpdir=dfs_tmpdir, sample_input=sample_input, registered_model_name=registered_model_name, signature=signature, input_example=input_example, await_registration_for=await_registration_for, pip_requirements=pip_requirements, extra_pip_requirements=extra_pip_requirements, metadata=metadata, ) # Otherwise, override the default model log behavior and save model directly to artifact repo mlflow_model = Model(artifact_path=artifact_path, run_id=run_id) with TempDir() as tmp: tmp_model_metadata_dir = tmp.path() _save_model_metadata( tmp_model_metadata_dir, spark_model, mlflow_model, sample_input, conda_env, code_paths, signature=signature, input_example=input_example, pip_requirements=pip_requirements, extra_pip_requirements=extra_pip_requirements, remote_model_path=remote_model_path, ) mlflow.tracking.fluent.log_artifacts(tmp_model_metadata_dir, artifact_path) mlflow.tracking.fluent._record_logged_model(mlflow_model) if registered_model_name is not None: mlflow.register_model( f"runs:/{run_id}/{artifact_path}", registered_model_name, await_registration_for, ) return mlflow_model.get_model_info()
def _mlflowdbfs_path(run_id, artifact_path): if artifact_path.startswith("/"): raise MlflowException( f"artifact_path should be relative, found: {artifact_path}", INVALID_PARAMETER_VALUE, ) return "{}:///artifacts?run_id={}&path=/{}".format( _MLFLOWDBFS_SCHEME, run_id, posixpath.join(artifact_path, _SPARK_MODEL_PATH_SUB) ) def _maybe_save_model(spark_model, model_dir): from py4j.protocol import Py4JError try: spark_model.save(posixpath.join(model_dir, _SPARK_MODEL_PATH_SUB)) return True except Py4JError: return False class _HadoopFileSystem: """ Interface to org.apache.hadoop.fs.FileSystem. Spark ML models expect to read from and write to Hadoop FileSystem when running on a cluster. Since MLflow works on local directories, we need this interface to copy the files between the current DFS and local dir. """ def __init__(self): raise Exception("This class should not be instantiated") _filesystem = None _conf = None @classmethod def _jvm(cls): from pyspark import SparkContext return SparkContext._gateway.jvm @classmethod def _fs(cls): if not cls._filesystem: cls._filesystem = cls._jvm().org.apache.hadoop.fs.FileSystem.get(cls._conf()) return cls._filesystem @classmethod def _conf(cls): from pyspark import SparkContext sc = SparkContext.getOrCreate() return sc._jsc.hadoopConfiguration() @classmethod def _local_path(cls, path): return cls._jvm().org.apache.hadoop.fs.Path(os.path.abspath(path)) @classmethod def _remote_path(cls, path): return cls._jvm().org.apache.hadoop.fs.Path(path) @classmethod def _stats(cls): return cls._jvm().org.apache.hadoop.fs.FileSystem.getGlobalStorageStatistics() @classmethod def copy_to_local_file(cls, src, dst, remove_src): cls._fs().copyToLocalFile(remove_src, cls._remote_path(src), cls._local_path(dst)) @classmethod def copy_from_local_file(cls, src, dst, remove_src): cls._fs().copyFromLocalFile(remove_src, cls._local_path(src), cls._remote_path(dst)) @classmethod def qualified_local_path(cls, path): return cls._fs().makeQualified(cls._local_path(path)).toString() @classmethod def maybe_copy_from_local_file(cls, src, dst): """ Conditionally copy the file to the Hadoop DFS. The file is copied iff the configuration has distributed filesystem. Returns: If copied, return new target location, otherwise return (absolute) source path. """ local_path = cls._local_path(src) qualified_local_path = cls._fs().makeQualified(local_path).toString() if qualified_local_path == "file:" + local_path.toString(): return local_path.toString() cls.copy_from_local_file(src, dst, remove_src=False) _logger.info("Copied SparkML model to %s", dst) return dst @classmethod def _try_file_exists(cls, dfs_path): try: return cls._fs().exists(dfs_path) except Exception as ex: # Log a debug-level message, since existence checks may raise exceptions # in normal operating circumstances that do not warrant warnings _logger.debug( "Unexpected exception while checking if model uri is visible on DFS: %s", ex ) return False @classmethod def maybe_copy_from_uri(cls, src_uri, dst_path, local_model_path=None): """ Conditionally copy the file to the Hadoop DFS from the source uri. In case the file is already on the Hadoop DFS do nothing. Returns: If copied, return new target location, otherwise return source uri. """ try: # makeQualified throws if wrong schema / uri dfs_path = cls._fs().makeQualified(cls._remote_path(src_uri)) if cls._try_file_exists(dfs_path): _logger.info("File '%s' is already on DFS, copy is not necessary.", src_uri) return src_uri except Exception: _logger.info("URI '%s' does not point to the current DFS.", src_uri) _logger.info("File '%s' not found on DFS. Will attempt to upload the file.", src_uri) return cls.maybe_copy_from_local_file( local_model_path or _download_artifact_from_uri(src_uri), dst_path ) @classmethod def delete(cls, path): cls._fs().delete(cls._remote_path(path), True) @classmethod def is_filesystem_available(cls, scheme): return scheme in [stats.getScheme() for stats in cls._stats().iterator()] def _should_use_mlflowdbfs(root_uri): # The `mlflowdbfs` scheme does not appear in the available schemes returned from # the Hadoop FileSystem API until a read call has been issued. from mlflow.utils._spark_utils import _get_active_spark_session if ( not is_valid_dbfs_uri(root_uri) or not is_databricks_acled_artifacts_uri(root_uri) or not databricks_utils.is_in_databricks_runtime() or (environment_variables._DISABLE_MLFLOWDBFS.get() or "").lower() == "true" ): return False try: databricks_utils._get_dbutils() except Exception: # If dbutils is unavailable, indicate that mlflowdbfs is unavailable # because usage of mlflowdbfs depends on dbutils return False mlflowdbfs_read_exception_str = None try: _get_active_spark_session().read.load("mlflowdbfs:///artifact?run_id=foo&path=/bar") except Exception as e: # The load invocation is expected to throw an exception. mlflowdbfs_read_exception_str = str(e) try: return _HadoopFileSystem.is_filesystem_available(_MLFLOWDBFS_SCHEME) except Exception: # The HDFS filesystem logic used to determine mlflowdbfs availability on Databricks # clusters may not work on certain Databricks cluster types due to unavailability of # the _HadoopFileSystem.is_filesystem_available() API. As a temporary workaround, # we check the contents of the expected exception raised by a dummy mlflowdbfs # read for evidence that mlflowdbfs is available. If "MlflowdbfsClient" is present # in the exception contents, we can safely assume that mlflowdbfs is available because # `MlflowdbfsClient` is exclusively used by mlflowdbfs for performing MLflow # file storage operations # # TODO: Remove this logic once the _HadoopFileSystem.is_filesystem_available() check # below is determined to work on all Databricks cluster types return "MlflowdbfsClient" in (mlflowdbfs_read_exception_str or "") def _save_model_metadata( dst_dir, spark_model, mlflow_model, sample_input, conda_env, code_paths, signature=None, input_example=None, pip_requirements=None, extra_pip_requirements=None, remote_model_path=None, ): """ Saves model metadata into the passed-in directory. If mlflowdbfs is not used, the persisted metadata assumes that a model can be loaded from a relative path to the metadata file (currently hard-coded to "sparkml"). If mlflowdbfs is used, remote_model_path should be provided, and the model needs to be loaded from the remote_model_path. """ import pyspark is_spark_connect_model = _is_spark_connect_model(spark_model) if sample_input is not None and not is_spark_connect_model: mleap.add_to_model( mlflow_model=mlflow_model, path=dst_dir, spark_model=spark_model, sample_input=sample_input, ) if signature is not None: mlflow_model.signature = signature if input_example is not None: _save_example(mlflow_model, input_example, dst_dir) code_dir_subpath = _validate_and_copy_code_paths(code_paths, dst_dir) mlflow_model.add_flavor( FLAVOR_NAME, pyspark_version=pyspark.__version__, model_data=_SPARK_MODEL_PATH_SUB, code=code_dir_subpath, model_class=_get_fully_qualified_class_name(spark_model), ) pyfunc.add_to_model( mlflow_model, loader_module="mlflow.spark", data=_SPARK_MODEL_PATH_SUB, conda_env=_CONDA_ENV_FILE_NAME, python_env=_PYTHON_ENV_FILE_NAME, code=code_dir_subpath, ) if size := get_total_file_size(dst_dir): mlflow_model.model_size_bytes = size mlflow_model.save(os.path.join(dst_dir, MLMODEL_FILE_NAME)) if conda_env is None: if pip_requirements is None: default_reqs = get_default_pip_requirements(is_spark_connect_model) if remote_model_path: _logger.info( "Inferring pip requirements by reloading the logged model from the databricks " "artifact repository, which can be time-consuming. To speed up, explicitly " "specify the conda_env or pip_requirements when calling log_model()." ) # To ensure `_load_pyfunc` can successfully load the model during the dependency # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file. inferred_reqs = mlflow.models.infer_pip_requirements( remote_model_path or dst_dir, FLAVOR_NAME, fallback=default_reqs, ) default_reqs = sorted(set(inferred_reqs).union(default_reqs)) else: default_reqs = None conda_env, pip_requirements, pip_constraints = _process_pip_requirements( default_reqs, pip_requirements, extra_pip_requirements, ) else: conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env) with open(os.path.join(dst_dir, _CONDA_ENV_FILE_NAME), "w") as f: yaml.safe_dump(conda_env, stream=f, default_flow_style=False) # Save `constraints.txt` if necessary if pip_constraints: write_to(os.path.join(dst_dir, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints)) # Save `requirements.txt` write_to(os.path.join(dst_dir, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements)) _PythonEnv.current().to_yaml(os.path.join(dst_dir, _PYTHON_ENV_FILE_NAME)) def _validate_model(spark_model): from pyspark.ml import Model as PySparkModel from pyspark.ml import Transformer as PySparkTransformer from pyspark.ml.util import MLReadable, MLWritable if _is_spark_connect_model(spark_model): return if ( ( not isinstance(spark_model, PySparkModel) and not isinstance(spark_model, PySparkTransformer) ) or not isinstance(spark_model, MLReadable) or not isinstance(spark_model, MLWritable) ): raise MlflowException( "Cannot serialize this model. MLflow can only save descendants of pyspark.ml.Model " "or pyspark.ml.Transformer that implement MLWritable and MLReadable.", INVALID_PARAMETER_VALUE, ) def _is_spark_connect_model(spark_model): """ Return whether the spark model is spark connect ML model """ try: from pyspark.ml.connect import Model as ConnectModel return isinstance(spark_model, ConnectModel) except ImportError: # pyspark < 3.5 does not support Spark connect ML model return False
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name="pyspark")) def save_model( spark_model, path, mlflow_model=None, conda_env=None, code_paths=None, dfs_tmpdir=None, sample_input=None, signature: ModelSignature = None, input_example: ModelInputExample = None, pip_requirements=None, extra_pip_requirements=None, metadata=None, ): """ Save a Spark MLlib Model to a local path. By default, this function saves models using the Spark MLlib persistence mechanism. Additionally, if a sample input is specified using the ``sample_input`` parameter, the model is also serialized in MLeap format and the MLeap flavor is added. Args: spark_model: Spark model to be saved - MLflow can only save descendants of pyspark.ml.Model or pyspark.ml.Transformer which implement MLReadable and MLWritable. path: Local path where the model is to be saved. mlflow_model: MLflow model config this flavor is being added to. conda_env: {{ conda_env }} code_paths: {{ code_paths }} dfs_tmpdir: Temporary directory path on Distributed (Hadoop) File System (DFS) or local filesystem if running in local mode. The model is be written in this destination and then copied to the requested local path. This is necessary as Spark ML models read from and write to DFS if running on a cluster. All temporary files created on the DFS are removed if this operation completes successfully. Defaults to ``/tmp/mlflow``. sample_input: A sample input that is used to add the MLeap flavor to the model. This must be a PySpark DataFrame that the model can evaluate. If ``sample_input`` is ``None``, the MLeap flavor is not added. signature: See the document of argument ``signature`` in :py:func:`mlflow.spark.log_model`. input_example: {{ input_example }} pip_requirements: {{ pip_requirements }} extra_pip_requirements: {{ extra_pip_requirements }} metadata: {{ metadata }} .. code-block:: python :caption: Example from mlflow import spark from pyspark.ml.pipeline import PipelineModel # your pyspark.ml.pipeline.PipelineModel type model = ... mlflow.spark.save_model(model, "spark-model") """ _validate_model(spark_model) _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements) from pyspark.ml import PipelineModel from mlflow.utils._spark_utils import _get_active_spark_session is_spark_connect_model = _is_spark_connect_model(spark_model) if not is_spark_connect_model and not isinstance(spark_model, PipelineModel): spark_model = PipelineModel([spark_model]) if mlflow_model is None: mlflow_model = Model() if metadata is not None: mlflow_model.metadata = metadata # for automatic signature inference, we use an inline implementation rather than the # `_infer_signature_from_input_example` API because we need to convert model predictions from a # list into a Pandas series for signature inference. if signature is None and input_example is not None: input_ex = _Example(input_example).inference_data try: spark = _get_active_spark_session() if spark is not None: input_example_spark_df = spark.createDataFrame(input_ex) signature = mlflow.pyspark.ml._infer_spark_model_signature( spark_model, input_example_spark_df ) except Exception as e: if environment_variables._MLFLOW_TESTING.get(): raise _logger.warning(_LOG_MODEL_INFER_SIGNATURE_WARNING_TEMPLATE, repr(e)) _logger.debug("", exc_info=True) elif signature is False: signature = None sparkml_data_path = os.path.abspath(os.path.join(path, _SPARK_MODEL_PATH_SUB)) if is_spark_connect_model: spark_model.saveToLocal(sparkml_data_path) else: # Spark ML stores the model on DFS if running on a cluster # Save it to a DFS temp dir first and copy it to local path if dfs_tmpdir is None: dfs_tmpdir = MLFLOW_DFS_TMP.get() tmp_path = generate_tmp_dfs_path(dfs_tmpdir) spark_model.save(tmp_path) # We're copying the Spark model from DBFS to the local filesystem if (a) the temporary DFS # URI we saved the Spark model to is a DBFS URI ("dbfs:/my-directory"), or (b) if we're # running on a Databricks cluster and the URI is schemeless (e.g. looks like a filesystem # absolute path like "/my-directory") copying_from_dbfs = is_valid_dbfs_uri(tmp_path) or ( databricks_utils.is_in_cluster() and posixpath.abspath(tmp_path) == tmp_path ) if copying_from_dbfs and databricks_utils.is_dbfs_fuse_available(): tmp_path_fuse = dbfs_hdfs_uri_to_fuse_path(tmp_path) shutil.move(src=tmp_path_fuse, dst=sparkml_data_path) else: _HadoopFileSystem.copy_to_local_file(tmp_path, sparkml_data_path, remove_src=True) _save_model_metadata( dst_dir=path, spark_model=spark_model, mlflow_model=mlflow_model, sample_input=sample_input, conda_env=conda_env, code_paths=code_paths, signature=signature, input_example=input_example, pip_requirements=pip_requirements, extra_pip_requirements=extra_pip_requirements, )
def _load_model_databricks(dfs_tmpdir, local_model_path): from pyspark.ml.pipeline import PipelineModel # Spark ML expects the model to be stored on DFS # Copy the model to a temp DFS location first. We cannot delete this file, as # Spark may read from it at any point. fuse_dfs_tmpdir = dbfs_hdfs_uri_to_fuse_path(dfs_tmpdir) os.makedirs(fuse_dfs_tmpdir) # Workaround for inability to use shutil.copytree with DBFS FUSE due to permission-denied # errors on passthrough-enabled clusters when attempting to copy permission bits for directories shutil_copytree_without_file_permissions(src_dir=local_model_path, dst_dir=fuse_dfs_tmpdir) return PipelineModel.load(dfs_tmpdir) def _load_model(model_uri, dfs_tmpdir_base=None, local_model_path=None): from pyspark.ml.pipeline import PipelineModel dfs_tmpdir = generate_tmp_dfs_path(dfs_tmpdir_base or MLFLOW_DFS_TMP.get()) if databricks_utils.is_in_cluster() and databricks_utils.is_dbfs_fuse_available(): return _load_model_databricks( dfs_tmpdir, local_model_path or _download_artifact_from_uri(model_uri) ) model_uri = _HadoopFileSystem.maybe_copy_from_uri(model_uri, dfs_tmpdir, local_model_path) return PipelineModel.load(model_uri) def _load_spark_connect_model(model_class, local_path): return _get_class_from_string(model_class).loadFromLocal(local_path)
[docs]def load_model(model_uri, dfs_tmpdir=None, dst_path=None): """ Load the Spark MLlib model from the path. Args: model_uri: The location, in URI format, of the MLflow model, for example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` - ``models:/<model_name>/<model_version>`` - ``models:/<model_name>/<stage>`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html# artifact-locations>`_. dfs_tmpdir: Temporary directory path on Distributed (Hadoop) File System (DFS) or local filesystem if running in local mode. The model is loaded from this destination. Defaults to ``/tmp/mlflow``. dst_path: The local filesystem path to which to download the model artifact. This directory must already exist. If unspecified, a local output path will be created. Returns: pyspark.ml.pipeline.PipelineModel .. code-block:: python :caption: Example from mlflow import spark model = mlflow.spark.load_model("spark-model") # Prepare test documents, which are unlabeled (id, text) tuples. test = spark.createDataFrame( [(4, "spark i j k"), (5, "l m n"), (6, "spark hadoop spark"), (7, "apache hadoop")], ["id", "text"], ) # Make predictions on test documents prediction = model.transform(test) """ # This MUST be called prior to appending the model flavor to `model_uri` in order # for `artifact_path` to take on the correct value for model loading via mlflowdbfs. root_uri, artifact_path = _get_root_uri_and_artifact_path(model_uri) flavor_conf = _get_flavor_configuration_from_uri(model_uri, FLAVOR_NAME, _logger) local_mlflow_model_path = _download_artifact_from_uri( artifact_uri=model_uri, output_path=dst_path ) _add_code_from_conf_to_system_path(local_mlflow_model_path, flavor_conf) model_class = flavor_conf.get("model_class") if model_class is not None and model_class.startswith("pyspark.ml.connect."): spark_model_local_path = os.path.join(local_mlflow_model_path, flavor_conf["model_data"]) return _load_spark_connect_model(model_class, spark_model_local_path) if _should_use_mlflowdbfs(model_uri): from pyspark.ml.pipeline import PipelineModel mlflowdbfs_path = _mlflowdbfs_path( DatabricksArtifactRepository._extract_run_id(model_uri), artifact_path ) with databricks_utils.MlflowCredentialContext( get_databricks_profile_uri_from_artifact_uri(root_uri) ): return PipelineModel.load(mlflowdbfs_path) sparkml_model_uri = append_to_uri_path(model_uri, flavor_conf["model_data"]) local_sparkml_model_path = os.path.join(local_mlflow_model_path, flavor_conf["model_data"]) return _load_model( model_uri=sparkml_model_uri, dfs_tmpdir_base=dfs_tmpdir, local_model_path=local_sparkml_model_path, )
def _load_pyfunc(path): """ Load PyFunc implementation. Called by ``pyfunc.load_model``. Args: path: Local filesystem path to the MLflow Model with the ``spark`` flavor. """ from mlflow.utils._spark_utils import ( _create_local_spark_session_for_loading_spark_model, _get_active_spark_session, ) model_meta_path = os.path.join(os.path.dirname(path), MLMODEL_FILE_NAME) model_meta = Model.load(model_meta_path) model_class = model_meta.flavors[FLAVOR_NAME].get("model_class") if model_class is not None and model_class.startswith("pyspark.ml.connect."): # Note: # Spark connect ML models don't require a spark session for running inference. spark = None spark_model = _load_spark_connect_model(model_class, path) else: # NOTE: The `_create_local_spark_session_for_loading_spark_model()` call below may change # settings of the active session which we do not intend to do here. # In particular, setting master to local[1] can break distributed clusters. # To avoid this problem, we explicitly check for an active session. This is not ideal but # there is no good workaround at the moment. spark = _get_active_spark_session() if spark is None: # NB: If there is no existing Spark context, create a new local one. # NB: We're disabling caching on the new context since we do not need it and we want to # avoid overwriting cache of underlying Spark cluster when executed on a Spark Worker # (e.g. as part of spark_udf). spark = _create_local_spark_session_for_loading_spark_model() spark_model = _load_model(model_uri=path) return _PyFuncModelWrapper(spark, spark_model, signature=model_meta.signature) def _find_and_set_features_col_as_vector_if_needed(spark_df, spark_model): """ Finds the `featuresCol` column in spark_model and then tries to cast that column to `vector` type. This method is noop if the `featuresCol` is already of type `vector` or if it can't be cast to `vector` type Note: If a spark ML pipeline contains a single Estimator stage, it requires the input dataframe to contain features column of vector type. But the autologging for pyspark ML casts vector column to array<double> type for parity with the pd Dataframe. The following fix is required, which transforms that features column back to vector type so that the pipeline stages can correctly work. A valid scenario is if the auto-logged input example is directly used for prediction, which would otherwise fail without this transformation. Args: spark_df: Input dataframe that contains `featuresCol` spark_model: A pipeline model or a single transformer that contains `featuresCol` param Returns: A spark dataframe that contains features column of `vector` type. """ from pyspark.ml.linalg import Vectors, VectorUDT from pyspark.sql import types as t from pyspark.sql.functions import udf def _find_stage_with_features_col(stage): if stage.hasParam("featuresCol"): def _array_to_vector(input_array): return Vectors.dense(input_array) array_to_vector_udf = udf(f=_array_to_vector, returnType=VectorUDT()) features_col_name = stage.extractParamMap().get(stage.featuresCol) features_col_type = [ _field for _field in spark_df.schema.fields if _field.name == features_col_name and _field.dataType in [t.ArrayType(t.DoubleType(), True), t.ArrayType(t.DoubleType(), False)] ] if len(features_col_type) == 1: return spark_df.withColumn( features_col_name, array_to_vector_udf(features_col_name) ) return spark_df if hasattr(spark_model, "stages"): for stage in reversed(spark_model.stages): return _find_stage_with_features_col(stage) return _find_stage_with_features_col(spark_model) class _PyFuncModelWrapper: """ Wrapper around Spark MLlib PipelineModel providing interface for scoring pandas DataFrame. """ def __init__(self, spark, spark_model, signature): self.spark = spark self.spark_model = spark_model self.signature = signature def get_raw_model(self): """ Returns the underlying model. """ return self.spark_model def predict( self, pandas_df, params: Optional[dict[str, Any]] = None, ): """ Generate predictions given input data in a pandas DataFrame. Args: pandas_df: pandas DataFrame containing input data. params: Additional parameters to pass to the model for inference. Returns: List with model predictions. """ if _is_spark_connect_model(self.spark_model): # Spark connect ML model directly appends prediction result column to input pandas # dataframe. To make input dataframe intact, make a copy first. # TODO: apache/spark master has made a change to do shallow copy before # calling `spark_model.transform`, so once spark 4.0 releases, we can # remove this line. pandas_df = pandas_df.copy(deep=False) # Assuming the model output column name is "prediction". # Spark model uses "prediction" as default model inference output column name. return self.spark_model.transform(pandas_df)["prediction"] # Convert List[np.float64] / np.array[np.float64] type to List[float] type, # otherwise it will break `spark.createDataFrame` column type inferring. if self.signature and self.signature.inputs: for col_spec in self.signature.inputs.inputs: if isinstance(col_spec.type, SparkMLVector): col_name = col_spec.name or pandas_df.columns[0] pandas_df[col_name] = pandas_df[col_name].map( lambda array: [float(elem) for elem in array] ) spark_df = self.spark.createDataFrame(pandas_df) # Convert Array[Double] column to spark ML vector type according to signature if self.signature and self.signature.inputs: for col_spec in self.signature.inputs.inputs: if isinstance(col_spec.type, SparkMLVector): from pyspark.ml.functions import array_to_vector col_name = col_spec.name or spark_df.columns[0] spark_df = spark_df.withColumn(col_name, array_to_vector(col_name)) # For the case of no signature or signature logged by old version MLflow, # the signature does not support spark ML vector type, in this case, # automatically infer vector type input columns and do the conversion # using `_find_and_set_features_col_as_vector_if_needed` utility function. spark_df = _find_and_set_features_col_as_vector_if_needed(spark_df, self.spark_model) prediction_column = mlflow.pyspark.ml._check_or_set_model_prediction_column( self.spark_model, spark_df ) prediction_df = self.spark_model.transform(spark_df).select(prediction_column) # If signature output schema exists and it contains vector type columns, # Convert spark ML vector type column to Array[Double] otherwise it will # break enforce_schema checking if self.signature and self.signature.outputs: for col_spec in self.signature.outputs.inputs: if isinstance(col_spec.type, SparkMLVector): from pyspark.ml.functions import vector_to_array col_name = col_spec.name or prediction_df.columns[0] prediction_df = prediction_df.withColumn(col_name, vector_to_array(col_name)) return [x.prediction for x in prediction_df.collect()]
[docs]@autologging_integration(FLAVOR_NAME) def autolog(disable=False, silent=False): """ Enables (or disables) and configures logging of Spark datasource paths, versions (if applicable), and formats when they are read. This method is not threadsafe and assumes a `SparkSession <https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.SparkSession.html>`_ already exists with the `mlflow-spark JAR <https://www.mlflow.org/docs/latest/tracking.html#spark>`_ attached. It should be called on the Spark driver, not on the executors (i.e. do not call this method within a function parallelized by Spark). The mlflow-spark JAR used must match the Scala version of Spark. Please see the `Maven Repository <https://mvnrepository.com/artifact/org.mlflow/mlflow-spark>`_ for available versions. This API requires Spark 3.0 or above. Datasource information is cached in memory and logged to all subsequent MLflow runs, including the active MLflow run (if one exists when the data is read). Note that autologging of Spark ML (MLlib) models is not currently supported via this API. Datasource autologging is best-effort, meaning that if Spark is under heavy load or MLflow logging fails for any reason (e.g., if the MLflow server is unavailable), logging may be dropped. For any unexpected issues with autologging, check Spark driver and executor logs in addition to stderr & stdout generated from your MLflow code - datasource information is pulled from Spark, so logs relevant to debugging may show up amongst the Spark logs. .. Note:: Spark datasource autologging only supports logging to MLflow runs in a single thread .. code-block:: python :caption: Example import mlflow.spark import os import shutil from pyspark.sql import SparkSession # Create and persist some dummy data # Note: the 2.12 in 'org.mlflow:mlflow-spark_2.12:2.16.2' below indicates the Scala # version, please match this with that of Spark. The 2.16.2 indicates the mlflow version. # Note: On environments like Databricks with pre-created SparkSessions, # ensure the org.mlflow:mlflow-spark_2.12:2.16.2 is attached as a library to # your cluster spark = ( SparkSession.builder.config( "spark.jars.packages", "org.mlflow:mlflow-spark_2.12:2.16.2", ) .master("local[*]") .getOrCreate() ) df = spark.createDataFrame( [(4, "spark i j k"), (5, "l m n"), (6, "spark hadoop spark"), (7, "apache hadoop")], ["id", "text"], ) import tempfile tempdir = tempfile.mkdtemp() df.write.csv(os.path.join(tempdir, "my-data-path"), header=True) # Enable Spark datasource autologging. mlflow.spark.autolog() loaded_df = spark.read.csv( os.path.join(tempdir, "my-data-path"), header=True, inferSchema=True ) # Call toPandas() to trigger a read of the Spark datasource. Datasource info # (path and format) is logged to the current active run, or the # next-created MLflow run if no run is currently active with mlflow.start_run() as active_run: pandas_df = loaded_df.toPandas() Args: disable: If ``True``, disables the Spark datasource autologging integration. If ``False``, enables the Spark datasource autologging integration. silent: If ``True``, suppress all event logs and warnings from MLflow during Spark datasource autologging. If ``False``, show all events and warnings during Spark datasource autologging. """ from pyspark import __version__ as pyspark_version from pyspark.sql import SparkSession from mlflow.spark.autologging import ( _listen_for_spark_activity, _stop_listen_for_spark_activity, ) from mlflow.utils._spark_utils import _get_active_spark_session # Check if environment variable PYSPARK_PIN_THREAD is set to false. # The "Pin thread" concept was introduced since Pyspark 3.0.0 and set to default to true # since Pyspark 3.2.0 (https://issues.apache.org/jira/browse/SPARK-35303). When pin thread # is enabled, Pyspark manages Python and JVM threads in a 1:1, meaning that when one thread # is terminated, the corresponding thread in the other side will be terminated as well. # However, this causes an issue in spark autologging as our event listener thread may be # terminated before receiving the datasource event. # Hence, we have to disable it and decouple the thread management between Python and JVM. if ( Version(pyspark_version) >= Version("3.2.0") and os.environ.get("PYSPARK_PIN_THREAD", "").lower() != "false" ): _logger.warning( "With Pyspark >= 3.2, PYSPARK_PIN_THREAD environment variable must be set to false " "for Spark datasource autologging to work." ) def __init__(original, self, *args, **kwargs): original(self, *args, **kwargs) _listen_for_spark_activity(self._sc) safe_patch(FLAVOR_NAME, SparkSession, "__init__", __init__, manage_run=False) def patched_session_stop(original, self, *args, **kwargs): _stop_listen_for_spark_activity(self.sparkContext) original(self, *args, **kwargs) safe_patch(FLAVOR_NAME, SparkSession, "stop", patched_session_stop, manage_run=False) active_session = _get_active_spark_session() if active_session is not None: # We know SparkContext exists here already, so get it sc = active_session.sparkContext if disable: _stop_listen_for_spark_activity(sc) else: _listen_for_spark_activity(sc)