Source code for mlflow.tensorflow

"""
The ``mlflow.tensorflow`` module provides an API for logging and loading TensorFlow models.
This module exports TensorFlow models with the following flavors:

TensorFlow (native) format
    This is the main flavor that can be loaded back into TensorFlow.
:py:mod:`mlflow.pyfunc`
    Produced for use by generic pyfunc-based deployment tools and batch inference.
"""

import importlib
import logging
import os
import shutil
import tempfile
from typing import Any, NamedTuple, Optional

import numpy as np
import pandas
import yaml
from packaging.version import Version

import mlflow
from mlflow import pyfunc
from mlflow.data.code_dataset_source import CodeDatasetSource
from mlflow.data.numpy_dataset import from_numpy
from mlflow.data.tensorflow_dataset import from_tensorflow
from mlflow.exceptions import INVALID_PARAMETER_VALUE, MlflowException
from mlflow.models import Model, ModelInputExample, ModelSignature, infer_signature
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.signature import _infer_signature_from_input_example
from mlflow.models.utils import _save_example
from mlflow.tensorflow.callback import MlflowCallback, MlflowModelCheckpointCallback  # noqa: F401
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.tracking.context import registry as context_registry
from mlflow.tracking.fluent import _shut_down_async_logging
from mlflow.types.schema import TensorSpec
from mlflow.utils import is_iterator
from mlflow.utils.autologging_utils import (
    PatchFunction,
    autologging_integration,
    get_autologging_config,
    log_fn_args_as_params,
    picklable_exception_safe_function,
    resolve_input_example_and_signature,
    safe_patch,
)
from mlflow.utils.checkpoint_utils import (
    _WEIGHT_ONLY_CHECKPOINT_SUFFIX,
    download_checkpoint_artifact,
)
from mlflow.utils.docstring_utils import LOG_MODEL_PARAM_DOCS, format_docstring
from mlflow.utils.environment import (
    _CONDA_ENV_FILE_NAME,
    _CONSTRAINTS_FILE_NAME,
    _PYTHON_ENV_FILE_NAME,
    _REQUIREMENTS_FILE_NAME,
    _mlflow_conda_env,
    _process_conda_env,
    _process_pip_requirements,
    _PythonEnv,
    _validate_env_arguments,
)
from mlflow.utils.file_utils import TempDir, get_total_file_size, write_to
from mlflow.utils.model_utils import (
    _add_code_from_conf_to_system_path,
    _get_flavor_configuration,
    _validate_and_copy_code_paths,
    _validate_and_prepare_target_save_path,
)
from mlflow.utils.requirements_utils import _get_pinned_requirement

FLAVOR_NAME = "tensorflow"

_logger = logging.getLogger(__name__)

# For tracking if the run was started by autologging.
_AUTOLOG_RUN_ID = None

# File name to which custom objects cloudpickle is saved - used during save and load
_CUSTOM_OBJECTS_SAVE_PATH = "custom_objects.cloudpickle"
# File name to which custom objects stored in tensorflow _GLOBAL_CUSTOM_OBJECTS
# is saved - it is automatically detected and used during save and load
_GLOBAL_CUSTOM_OBJECTS_SAVE_PATH = "global_custom_objects.cloudpickle"
_KERAS_MODULE_SPEC_PATH = "keras_module.txt"
_KERAS_SAVE_FORMAT_PATH = "save_format.txt"
# File name to which keras model is saved
_MODEL_SAVE_PATH = "model"


_MODEL_TYPE_KERAS = "keras"
_MODEL_TYPE_TF1_ESTIMATOR = "tf1-estimator"
_MODEL_TYPE_TF2_MODULE = "tf2-module"


_KERAS_MODEL_DATA_PATH = "data"
_TF2MODEL_SUBPATH = "tf2model"


MLflowCallback = MlflowCallback  # for backwards compatibility


[docs]def get_default_pip_requirements(include_cloudpickle=False): """ Returns A list of default pip requirements for MLflow Models produced by this flavor. Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment that, at minimum, contains these requirements. """ pip_deps = [_get_pinned_requirement("tensorflow")] if include_cloudpickle: pip_deps.append(_get_pinned_requirement("cloudpickle")) return pip_deps
[docs]def get_default_conda_env(): """ Returns: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements())
[docs]def get_global_custom_objects(): """ Returns: A live reference to the global dictionary of custom objects. """ try: from tensorflow.keras.saving import get_custom_objects return get_custom_objects() except Exception: pass
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME)) def log_model( model, artifact_path, custom_objects=None, conda_env=None, code_paths=None, signature: ModelSignature = None, input_example: ModelInputExample = None, registered_model_name=None, await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS, pip_requirements=None, extra_pip_requirements=None, saved_model_kwargs=None, keras_model_kwargs=None, metadata=None, ): """ Log a TF2 core model (inheriting tf.Module) or a Keras model in MLflow Model format. .. note:: If you log a Keras or TensorFlow model without a signature, inference with :py:func:`mlflow.pyfunc.spark_udf()` will not work unless the model's pyfunc representation accepts pandas DataFrames as inference inputs. You can infer a model's signature by calling the :py:func:`mlflow.models.infer_signature()` API on features from the model's test dataset. You can also manually create a model signature, for example: .. code-block:: python :caption: Example of creating signature for saving TensorFlow and `tf.Keras` models from mlflow.types.schema import Schema, TensorSpec from mlflow.models import ModelSignature import numpy as np input_schema = Schema( [ TensorSpec(np.dtype(np.uint64), (-1, 5), "field1"), TensorSpec(np.dtype(np.float32), (-1, 3, 2), "field2"), ] ) # Create the signature for a model that requires 2 inputs: # - Input with name "field1", shape (-1, 5), type "np.uint64" # - Input with name "field2", shape (-1, 3, 2), type "np.float32" signature = ModelSignature(inputs=input_schema) Args: model: The TF2 core model (inheriting tf.Module) or Keras model to be saved. artifact_path: The run-relative path to which to log model artifacts. custom_objects: A Keras ``custom_objects`` dictionary mapping names (strings) to custom classes or functions associated with the Keras model. MLflow saves these custom layers using CloudPickle and restores them automatically when the model is loaded with :py:func:`mlflow.tensorflow.load_model` and :py:func:`mlflow.pyfunc.load_model`. conda_env: {{ conda_env }} code_paths: {{ code_paths }} signature: {{ signature }} input_example: {{ input_example }} registered_model_name: If given, create a model version under ``registered_model_name``, also creating a registered model if one with the given name does not exist. await_registration_for: Number of seconds to wait for the model version to finish being created and is in ``READY`` status. By default, the function waits for five minutes. Specify 0 or None to skip waiting. pip_requirements: {{ pip_requirements }} extra_pip_requirements: {{ extra_pip_requirements }} saved_model_kwargs: a dict of kwargs to pass to ``tensorflow.saved_model.save`` method. keras_model_kwargs: a dict of kwargs to pass to ``keras_model.save`` method. metadata: {{ metadata }} Returns A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the metadata of the logged model. """ return Model.log( artifact_path=artifact_path, flavor=mlflow.tensorflow, model=model, conda_env=conda_env, code_paths=code_paths, custom_objects=custom_objects, registered_model_name=registered_model_name, signature=signature, input_example=input_example, await_registration_for=await_registration_for, pip_requirements=pip_requirements, extra_pip_requirements=extra_pip_requirements, saved_model_kwargs=saved_model_kwargs, keras_model_kwargs=keras_model_kwargs, metadata=metadata, )
def _save_keras_custom_objects(path, custom_objects, file_name): """ Save custom objects dictionary to a cloudpickle file so a model can be easily loaded later. Args: path: An absolute path that points to the data directory within /path/to/model. custom_objects: Keras ``custom_objects`` is a dictionary mapping names (strings) to custom classes or functions to be considered during deserialization. MLflow saves these custom layers using CloudPickle and restores them automatically when the model is loaded with :py:func:`mlflow.keras.load_model` and :py:func:`mlflow.pyfunc.load_model`. file_name: The file name to save the custom objects to. """ import cloudpickle custom_objects_path = os.path.join(path, file_name) with open(custom_objects_path, "wb") as out_f: cloudpickle.dump(custom_objects, out_f) _NO_MODEL_SIGNATURE_WARNING = ( "You are saving a TensorFlow Core model or Keras model " "without a signature. Inference with mlflow.pyfunc.spark_udf() will not work " "unless the model's pyfunc representation accepts pandas DataFrames as " "inference inputs." )
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME)) def save_model( model, path, conda_env=None, code_paths=None, mlflow_model=None, custom_objects=None, signature: ModelSignature = None, input_example: ModelInputExample = None, pip_requirements=None, extra_pip_requirements=None, saved_model_kwargs=None, keras_model_kwargs=None, metadata=None, ): """ Save a TF2 core model (inheriting tf.Module) or Keras model in MLflow Model format to a path on the local file system. .. note:: If you save a Keras or TensorFlow model without a signature, inference with :py:func:`mlflow.pyfunc.spark_udf()` will not work unless the model's pyfunc representation accepts pandas DataFrames as inference inputs. You can infer a model's signature by calling the :py:func:`mlflow.models.infer_signature()` API on features from the model's test dataset. You can also manually create a model signature, for example: .. code-block:: python :caption: Example of creating signature for saving TensorFlow and `tf.Keras` models from mlflow.types.schema import Schema, TensorSpec from mlflow.models import ModelSignature import numpy as np input_schema = Schema( [ TensorSpec(np.dtype(np.uint64), (-1, 5), "field1"), TensorSpec(np.dtype(np.float32), (-1, 3, 2), "field2"), ] ) # Create the signature for a model that requires 2 inputs: # - Input with name "field1", shape (-1, 5), type "np.uint64" # - Input with name "field2", shape (-1, 3, 2), type "np.float32" signature = ModelSignature(inputs=input_schema) Args: model: The Keras model or Tensorflow module to be saved. path: Local path where the MLflow model is to be saved. conda_env: {{ conda_env }} code_paths: {{ code_paths }} mlflow_model: MLflow model configuration to which to add the ``tensorflow`` flavor. custom_objects: A Keras ``custom_objects`` dictionary mapping names (strings) to custom classes or functions associated with the Keras model. MLflow saves these custom layers using CloudPickle and restores them automatically when the model is loaded with :py:func:`mlflow.tensorflow.load_model` and :py:func:`mlflow.pyfunc.load_model`. signature: {{ signature }} input_example: {{ input_example }} pip_requirements: {{ pip_requirements }} extra_pip_requirements: {{ extra_pip_requirements }} saved_model_kwargs: a dict of kwargs to pass to ``tensorflow.saved_model.save`` method if the model to be saved is a Tensorflow module. keras_model_kwargs: a dict of kwargs to pass to ``model.save`` method if the model to be saved is a keras model. metadata: {{ metadata }} """ import tensorflow as tf from tensorflow.keras.models import Model as KerasModel # check if path exists path = os.path.abspath(path) _validate_and_prepare_target_save_path(path) code_dir_subpath = _validate_and_copy_code_paths(code_paths, path) if mlflow_model is None: mlflow_model = Model() saved_example = _save_example(mlflow_model, input_example, path) if signature is None and saved_example is not None: wrapped_model = None if isinstance(model, KerasModel): wrapped_model = _KerasModelWrapper(model, signature) elif isinstance(model, tf.Module): wrapped_model = _TF2ModuleWrapper(model, signature) if wrapped_model is not None: signature = _infer_signature_from_input_example(saved_example, wrapped_model) elif signature is False: signature = None if signature is None: _logger.warning(_NO_MODEL_SIGNATURE_WARNING) else: num_inputs = len(signature.inputs.inputs) if num_inputs == 0: raise MlflowException( "The model signature's input schema must contain at least one field.", error_code=INVALID_PARAMETER_VALUE, ) for field in signature.inputs.inputs: if not isinstance(field, TensorSpec): raise MlflowException( "All fields in the model signature's input schema must be of type TensorSpec.", error_code=INVALID_PARAMETER_VALUE, ) if field.shape[0] != -1: raise MlflowException( "All fields in the model signature's input schema must have a shape " "in which the first dimension is a variable dimension.", error_code=INVALID_PARAMETER_VALUE, ) _validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements) if signature is not None: mlflow_model.signature = signature if metadata is not None: mlflow_model.metadata = metadata if isinstance(model, KerasModel): keras_model_kwargs = keras_model_kwargs or {} data_subpath = _KERAS_MODEL_DATA_PATH # construct new data folder in existing path data_path = os.path.join(path, data_subpath) os.makedirs(data_path) model_subpath = os.path.join(data_subpath, _MODEL_SAVE_PATH) keras_module = importlib.import_module("tensorflow.keras") # save custom objects if there are custom objects if custom_objects is not None: _save_keras_custom_objects(data_path, custom_objects, _CUSTOM_OBJECTS_SAVE_PATH) # save custom objects stored within _GLOBAL_CUSTOM_OBJECTS if global_custom_objects := get_global_custom_objects(): _save_keras_custom_objects( data_path, global_custom_objects, _GLOBAL_CUSTOM_OBJECTS_SAVE_PATH ) # save keras module spec to path/data/keras_module.txt with open(os.path.join(data_path, _KERAS_MODULE_SPEC_PATH), "w") as f: f.write(keras_module.__name__) # Use the SavedModel format if `save_format` is unspecified save_format = keras_model_kwargs.get("save_format", "tf") # save keras save_format to path/data/save_format.txt with open(os.path.join(data_path, _KERAS_SAVE_FORMAT_PATH), "w") as f: f.write(save_format) # save keras model # To maintain prior behavior, when the format is HDF5, we save # with the h5 file extension. Otherwise, model_path is a directory # where the saved_model.pb will be stored (for SavedModel format) # For tensorflow 2.16.0 (including dev version), # it only supports saving model in .h5 or .keras format if save_format == "h5": file_extension = ".h5" elif Version(tf.__version__).release >= (2, 16): file_extension = ".keras" else: file_extension = "" model_path = os.path.join(path, model_subpath) + file_extension if path.startswith("/dbfs/"): # The Databricks Filesystem uses a FUSE implementation that does not support # random writes. It causes an error. with tempfile.NamedTemporaryFile(suffix=".h5") as f: model.save(f.name, **keras_model_kwargs) f.flush() # force flush the data shutil.copy2(src=f.name, dst=model_path) else: model.save(model_path, **keras_model_kwargs) pyfunc_options = { "data": data_subpath, } flavor_options = { **pyfunc_options, "model_type": _MODEL_TYPE_KERAS, "keras_version": tf.__version__, "save_format": save_format, } elif isinstance(model, tf.Module): saved_model_kwargs = saved_model_kwargs or {} model_dir_subpath = _TF2MODEL_SUBPATH model_path = os.path.join(path, model_dir_subpath) tf.saved_model.save(model, model_path, **saved_model_kwargs) pyfunc_options = {} flavor_options = { "saved_model_dir": model_dir_subpath, "model_type": _MODEL_TYPE_TF2_MODULE, } else: raise MlflowException(f"Unknown model type: {type(model)}") # update flavor info to mlflow_model mlflow_model.add_flavor(FLAVOR_NAME, code=code_dir_subpath, **flavor_options) # append loader_module, data and env data to mlflow_model pyfunc.add_to_model( mlflow_model, loader_module="mlflow.tensorflow", conda_env=_CONDA_ENV_FILE_NAME, python_env=_PYTHON_ENV_FILE_NAME, code=code_dir_subpath, **pyfunc_options, ) # add model file size to mlflow_model if size := get_total_file_size(path): mlflow_model.model_size_bytes = size # save mlflow_model to path/MLmodel mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME)) include_cloudpickle = custom_objects is not None or get_global_custom_objects() is not None if conda_env is None: if pip_requirements is None: default_reqs = get_default_pip_requirements(include_cloudpickle) # To ensure `_load_pyfunc` can successfully load the model during the dependency # inference, `mlflow_model.save` must be called beforehand to save an MLmodel file. inferred_reqs = mlflow.models.infer_pip_requirements( path, FLAVOR_NAME, fallback=default_reqs ) default_reqs = sorted(set(inferred_reqs).union(default_reqs)) else: default_reqs = None conda_env, pip_requirements, pip_constraints = _process_pip_requirements( default_reqs, pip_requirements, extra_pip_requirements, ) else: conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env) with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f: yaml.safe_dump(conda_env, stream=f, default_flow_style=False) # Save `constraints.txt` if necessary if pip_constraints: write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints)) # Save `requirements.txt` write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements)) _PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
def _load_custom_objects(path, file_name): custom_objects_path = None if os.path.isdir(path): if os.path.isfile(os.path.join(path, file_name)): custom_objects_path = os.path.join(path, file_name) if custom_objects_path is not None: import cloudpickle with open(custom_objects_path, "rb") as f: return cloudpickle.load(f) def _load_keras_model(model_path, keras_module, save_format, **kwargs): keras_models = importlib.import_module(keras_module.__name__ + ".models") custom_objects = kwargs.pop("custom_objects", {}) if saved_custom_objects := _load_custom_objects(model_path, _CUSTOM_OBJECTS_SAVE_PATH): saved_custom_objects.update(custom_objects) custom_objects = saved_custom_objects if global_custom_objects := _load_custom_objects(model_path, _GLOBAL_CUSTOM_OBJECTS_SAVE_PATH): global_custom_objects.update(custom_objects) custom_objects = global_custom_objects if os.path.isdir(model_path): model_path = os.path.join(model_path, _MODEL_SAVE_PATH) # If the save_format is HDF5, then we save with h5 file # extension to align with prior behavior of mlflow logging if save_format == "h5": model_path += ".h5" # Since TF 2.16.0, it only supports saving model in .h5 or .keras format. # But for backwards compatibility, we still save model without suffix # for older versions of TF. elif os.path.exists(model_path + ".keras"): model_path += ".keras" import tensorflow as tf # Using naive tuple-based comparison here rather than packaging.version.Version, because # the latter consider dev version e.g. 2.16.0.dev2023010 as ahead of 2.16. While that is # 'correct', we rather want to treat it is a part of 2.16 here. if save_format == "h5" and (2, 2, 3) <= Version(tf.__version__).release < (2, 16): # NOTE: TF 2.2.3 does not work with unicode paths in python2. Pass in h5py.File instead # of string to avoid issues. import h5py with h5py.File(os.path.abspath(model_path), "r") as model_path: return keras_models.load_model(model_path, custom_objects=custom_objects, **kwargs) else: # NOTE: Older versions of Keras only handle filepath. return keras_models.load_model(model_path, custom_objects=custom_objects, **kwargs) def _get_flavor_conf(model_conf): if "keras" in model_conf.flavors: return model_conf.flavors["keras"] return model_conf.flavors[FLAVOR_NAME] def _infer_model_type(model_conf): model_type = _get_flavor_conf(model_conf).get("model_type") if model_type is not None: return model_type # Loading model logged by old version mlflow, which deos not record model_type # Inferring model type by checking whether model_conf contains "keras" flavor. if "keras" in model_conf.flavors: return _MODEL_TYPE_KERAS return _MODEL_TYPE_TF1_ESTIMATOR
[docs]def load_model(model_uri, dst_path=None, saved_model_kwargs=None, keras_model_kwargs=None): """ Load an MLflow model that contains the TensorFlow flavor from the specified path. Args: model_uri: The location, in URI format, of the MLflow model. For example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` - ``models:/<model_name>/<model_version>`` - ``models:/<model_name>/<stage>`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html# artifact-locations>`_. dst_path: The local filesystem path to which to download the model artifact. This directory must already exist. If unspecified, a local output path will be created. saved_model_kwargs: kwargs to pass to ``tensorflow.saved_model.load`` method. Only available when you are loading a tensorflow2 core model. keras_model_kwargs: kwargs to pass to ``keras.models.load_model`` method. Only available when you are loading a Keras model. Returns A callable graph (tf.function) that takes inputs and returns inferences. """ import tensorflow as tf local_model_path = _download_artifact_from_uri(artifact_uri=model_uri, output_path=dst_path) model_configuration_path = os.path.join(local_model_path, MLMODEL_FILE_NAME) model_conf = Model.load(model_configuration_path) flavor_conf = _get_flavor_conf(model_conf) _add_code_from_conf_to_system_path(local_model_path, flavor_conf) model_type = _infer_model_type(model_conf) if model_type == _MODEL_TYPE_KERAS: keras_model_kwargs = keras_model_kwargs or {} keras_module = importlib.import_module(flavor_conf.get("keras_module", "tensorflow.keras")) # For backwards compatibility, we assume h5 when the save_format is absent save_format = flavor_conf.get("save_format", "h5") model_path = os.path.join(local_model_path, flavor_conf.get("data", _MODEL_SAVE_PATH)) return _load_keras_model( model_path=model_path, keras_module=keras_module, save_format=save_format, **keras_model_kwargs, ) if model_type == _MODEL_TYPE_TF1_ESTIMATOR: tf_saved_model_dir = os.path.join(local_model_path, flavor_conf["saved_model_dir"]) tf_meta_graph_tags = flavor_conf["meta_graph_tags"] tf_signature_def_key = flavor_conf["signature_def_key"] return _load_tf1_estimator_saved_model( tf_saved_model_dir=tf_saved_model_dir, tf_meta_graph_tags=tf_meta_graph_tags, tf_signature_def_key=tf_signature_def_key, ) if model_type == _MODEL_TYPE_TF2_MODULE: saved_model_kwargs = saved_model_kwargs or {} tf_saved_model_dir = os.path.join(local_model_path, flavor_conf["saved_model_dir"]) return tf.saved_model.load(tf_saved_model_dir, **saved_model_kwargs) raise MlflowException(f"Unknown model_type: {model_type}")
def _load_tf1_estimator_saved_model(tf_saved_model_dir, tf_meta_graph_tags, tf_signature_def_key): """ Load a specified TensorFlow model consisting of a TensorFlow metagraph and signature definition from a serialized TensorFlow ``SavedModel`` collection. Args: tf_saved_model_dir: The local filesystem path or run-relative artifact path to the model. tf_meta_graph_tags: A list of tags identifying the model's metagraph within the serialized ``SavedModel`` object. For more information, see the ``tags`` parameter of the `tf.saved_model.builder.SavedModelBuilder method <https://www.tensorflow.org/api_docs/python/tf/saved_model/ builder/SavedModelBuilder#add_meta_graph>`_. tf_signature_def_key: A string identifying the input/output signature associated with the model. This is a key within the serialized ``SavedModel``'s signature definition mapping. For more information, see the ``signature_def_map`` parameter of the ``tf.saved_model.builder.SavedModelBuilder`` method. Returns: A callable graph (tensorflow.function) that takes inputs and returns inferences. """ import tensorflow as tf loaded = tf.saved_model.load(tags=tf_meta_graph_tags, export_dir=tf_saved_model_dir) loaded_sig = loaded.signatures if tf_signature_def_key not in loaded_sig: raise MlflowException( f"Could not find signature def key {tf_signature_def_key}. " f"Available keys are: {list(loaded_sig.keys())}" ) return loaded_sig[tf_signature_def_key] def _load_pyfunc(path): """ Load PyFunc implementation. Called by ``pyfunc.load_model``. This function loads an MLflow model with the TensorFlow flavor into a new TensorFlow graph and exposes it behind the ``pyfunc.predict`` interface. Args: path: Local filesystem path to the MLflow Model with the ``tensorflow`` flavor. """ import tensorflow as tf model_meta_path1 = os.path.join(path, MLMODEL_FILE_NAME) model_meta_path2 = os.path.join(os.path.dirname(path), MLMODEL_FILE_NAME) if os.path.isfile(model_meta_path1): model_meta = Model.load(model_meta_path1) elif os.path.isfile(model_meta_path2): model_meta = Model.load(model_meta_path2) else: raise MlflowException(f"Cannot find file {MLMODEL_FILE_NAME} for the logged model.") model_type = _infer_model_type(model_meta) if model_type == _MODEL_TYPE_KERAS: if os.path.isfile(os.path.join(path, _KERAS_MODULE_SPEC_PATH)): with open(os.path.join(path, _KERAS_MODULE_SPEC_PATH)) as f: keras_module = importlib.import_module(f.read()) else: from tensorflow import keras keras_module = keras # By default, we assume the save_format is h5 for backwards compatibility save_format = "h5" save_format_path = os.path.join(path, _KERAS_SAVE_FORMAT_PATH) if os.path.isfile(save_format_path): with open(save_format_path) as f: save_format = f.read() # In SavedModel format, loaded model should be compiled. should_compile = save_format == "tf" m = _load_keras_model( path, keras_module=keras_module, save_format=save_format, compile=should_compile ) return _KerasModelWrapper(m, model_meta.signature) if model_type == _MODEL_TYPE_TF1_ESTIMATOR: flavor_conf = _get_flavor_configuration(path, FLAVOR_NAME) tf_saved_model_dir = os.path.join(path, flavor_conf["saved_model_dir"]) tf_meta_graph_tags = flavor_conf["meta_graph_tags"] tf_signature_def_key = flavor_conf["signature_def_key"] loaded_model = tf.saved_model.load(export_dir=tf_saved_model_dir, tags=tf_meta_graph_tags) return _TF2Wrapper(model=loaded_model, infer=loaded_model.signatures[tf_signature_def_key]) if model_type == _MODEL_TYPE_TF2_MODULE: flavor_conf = _get_flavor_configuration(path, FLAVOR_NAME) tf_saved_model_dir = os.path.join(path, flavor_conf["saved_model_dir"]) loaded_model = tf.saved_model.load(tf_saved_model_dir) return _TF2ModuleWrapper(model=loaded_model, signature=model_meta.signature) raise MlflowException("Unknown model_type.") class _TF2Wrapper: """ Wrapper class that exposes a TensorFlow model for inference via a ``predict`` function such that ``predict(data: pandas.DataFrame) -> pandas.DataFrame``. For TensorFlow versions >= 2.0.0. """ def __init__(self, model, infer): """ Args: model: A Tensorflow SavedModel. infer: Tensorflow function returned by a saved model that is used for inference. """ # Note: we need to retain the model reference in TF2Wrapper object, because the infer # function in tensorflow will be `ConcreteFunction` which only retains WeakRefs to the # variables they close over. # See https://www.tensorflow.org/guide/function#deleting_tfvariables_between_function_calls self.model = model self.infer = infer def get_raw_model(self): """ Returns the underlying model. """ return self.model def predict( self, data, params: Optional[dict[str, Any]] = None, ): """ Args: data: Model input data. params: Additional parameters to pass to the model for inference. Returns: Model predictions. """ import tensorflow as tf feed_dict = {} if isinstance(data, dict): feed_dict = {k: tf.constant(v) for k, v in data.items()} elif isinstance(data, pandas.DataFrame): for df_col_name in list(data): # If there are multiple columns with the same name, selecting the shared name # from the DataFrame will result in another DataFrame containing the columns # with the shared name. TensorFlow cannot make eager tensors out of pandas # DataFrames, so we convert the DataFrame to a numpy array here. val = data[df_col_name] val = val.values if isinstance(val, pandas.DataFrame) else np.array(val.to_list()) feed_dict[df_col_name] = tf.constant(val) else: raise TypeError("Only dict and DataFrame input types are supported") raw_preds = self.infer(**feed_dict) pred_dict = {col_name: raw_preds[col_name].numpy() for col_name in raw_preds.keys()} for col in pred_dict.keys(): # If the output tensor is not 1-dimensional # AND all elements have length of 1, flatten the array with `ravel()` if len(pred_dict[col].shape) != 1 and all( len(element) == 1 for element in pred_dict[col] ): pred_dict[col] = pred_dict[col].ravel() else: pred_dict[col] = pred_dict[col].tolist() if isinstance(data, dict): return pred_dict else: return pandas.DataFrame.from_dict(data=pred_dict) class _TF2ModuleWrapper: def __init__(self, model, signature): self.model = model self.signature = signature def get_raw_model(self): """ Returns the underlying model. """ return self.model def predict( self, data, params: Optional[dict[str, Any]] = None, ): """ Args: data: Model input data. params: Additional parameters to pass to the model for inference. Returns: Model predictions. """ import tensorflow as tf if isinstance(data, (np.ndarray, list)): data = tf.convert_to_tensor(data) else: raise MlflowException( f"Unsupported input data type: {type(data)}, the input data must be " "numpy array or a list." ) result = self.model(data) if isinstance(result, tf.Tensor): return result.numpy() return result class _KerasModelWrapper: def __init__(self, keras_model, signature): self.keras_model = keras_model self.signature = signature def get_raw_model(self): """ Returns the underlying model. """ return self.keras_model def predict( self, data, params: Optional[dict[str, Any]] = None, ): """ Args: data: Model input data. params: Additional parameters to pass to the model for inference. Returns Model predictions. """ if isinstance(data, pandas.DataFrame): # This line is for backwards compatibility: # If model signature is not None, when calling # `keras_pyfunc_model.predict(pandas_dataframe)`, `_enforce_schema` will convert # dataframe input into dict input, so in the case `_KerasModelWrapper.predict` # will receive a dict type input. # If model signature is None, `_enforce_schema` can do nothing, and if the input # is dataframe, `_KerasModelWrapper.predict` will receive a dataframe input, # we need to handle this case, to keep backwards compatibility. return pandas.DataFrame(self.keras_model.predict(data.values), index=data.index) supported_input_types = (np.ndarray, list, tuple, dict) if not isinstance(data, supported_input_types): raise MlflowException( f"Unsupported input data type: {type(data)}. " f"Must be one of: {[x.__name__ for x in supported_input_types]}", INVALID_PARAMETER_VALUE, ) return self.keras_model.predict(data) def _assoc_list_to_map(lst): """ Convert an association list to a dictionary. """ d = {} for run_id, metric in lst: d[run_id] = d[run_id] + [metric] if run_id in d else [metric] return d @picklable_exception_safe_function def _get_tensorboard_callback(lst): import tensorflow as tf for x in lst: if isinstance(x, tf.keras.callbacks.TensorBoard): return x return None # A representation of a TensorBoard event logging directory with two attributes: # :location - string: The filesystem location of the logging directory # :is_temp - boolean: `True` if the logging directory was created for temporary use by MLflow, # `False` otherwise class _TensorBoardLogDir(NamedTuple): location: str is_temp: bool def _setup_callbacks(callbacks, log_every_epoch, log_every_n_steps): """ Adds TensorBoard and MlfLowTfKeras callbacks to the input list, and returns the new list and appropriate log directory. """ from mlflow.tensorflow.autologging import _TensorBoard from mlflow.tensorflow.callback import MlflowCallback, MlflowModelCheckpointCallback tb = _get_tensorboard_callback(callbacks) for callback in callbacks: if isinstance(callback, MlflowCallback): raise MlflowException( "MLflow autologging must be turned off if an `MlflowCallback` is explicitly added " "to the callback list. You are creating an `MlflowCallback` while having " "autologging enabled. Please either call `mlflow.tensorflow.autolog(disable=True)` " "to disable autologging or remove `MlflowCallback` from the callback list. " ) if tb is None: log_dir = _TensorBoardLogDir(location=tempfile.mkdtemp(), is_temp=True) callbacks.append(_TensorBoard(log_dir.location)) else: log_dir = _TensorBoardLogDir(location=tb.log_dir, is_temp=False) callbacks.append( MlflowCallback( log_every_epoch=log_every_epoch, log_every_n_steps=log_every_n_steps, ) ) model_checkpoint = get_autologging_config(mlflow.tensorflow.FLAVOR_NAME, "checkpoint", True) if model_checkpoint: checkpoint_monitor = get_autologging_config( mlflow.tensorflow.FLAVOR_NAME, "checkpoint_monitor", "val_loss" ) checkpoint_mode = get_autologging_config( mlflow.tensorflow.FLAVOR_NAME, "checkpoint_mode", "min" ) checkpoint_save_best_only = get_autologging_config( mlflow.tensorflow.FLAVOR_NAME, "checkpoint_save_best_only", True ) checkpoint_save_weights_only = get_autologging_config( mlflow.tensorflow.FLAVOR_NAME, "checkpoint_save_weights_only", False ) checkpoint_save_freq = get_autologging_config( mlflow.tensorflow.FLAVOR_NAME, "checkpoint_save_freq", "epoch" ) if not any(isinstance(callback, MlflowModelCheckpointCallback) for callback in callbacks): callbacks.append( MlflowModelCheckpointCallback( monitor=checkpoint_monitor, mode=checkpoint_mode, save_best_only=checkpoint_save_best_only, save_weights_only=checkpoint_save_weights_only, save_freq=checkpoint_save_freq, ) ) return callbacks, log_dir
[docs]@autologging_integration(FLAVOR_NAME) def autolog( every_n_iter=1, log_models=True, log_datasets=True, disable=False, exclusive=False, disable_for_unsupported_versions=False, silent=False, registered_model_name=None, log_input_examples=False, log_model_signatures=True, saved_model_kwargs=None, keras_model_kwargs=None, extra_tags=None, log_every_epoch=True, log_every_n_steps=None, checkpoint=True, checkpoint_monitor="val_loss", checkpoint_mode="min", checkpoint_save_best_only=True, checkpoint_save_weights_only=False, checkpoint_save_freq="epoch", ): """ Enables autologging for ``tf.keras``. Note that only ``tensorflow>=2.3`` are supported. As an example, try running the `Keras/TensorFlow example <https://github.com/mlflow/mlflow/blob/master/examples/keras/train.py>`_. For each TensorFlow module, autologging captures the following information: **tf.keras** - **Metrics** and **Parameters** - Training and validation loss. - User-specified metrics. - Optimizer config, e.g., learning_rate, momentum, etc. - Training configs, e.g., epochs, batch_size, etc. - **Artifacts** - Model summary on training start. - Saved Keras model in `MLflow Model <https://mlflow.org/docs/latest/models.html>`_ format. - TensorBoard logs on training end. **tf.keras.callbacks.EarlyStopping** - **Metrics** and **Parameters** - Metrics from the ``EarlyStopping`` callbacks: ``stopped_epoch``, ``restored_epoch``, ``restore_best_weight``, etc - ``fit()`` or ``fit_generator()`` parameters associated with ``EarlyStopping``: ``min_delta``, ``patience``, ``baseline``, ``restore_best_weights``, etc Refer to the autologging tracking documentation for more information on `TensorFlow workflows <https://www.mlflow.org/docs/latest/tracking.html#tensorflow-and-keras-experimental>`_. Note that autologging cannot be used together with explicit MLflow callback, i.e., `mlflow.tensorflow.MlflowCallback`, because it will cause the same metrics to be logged twice. If you want to include `mlflow.tensorflow.MlflowCallback` in the callback list, please turn off autologging by calling `mlflow.tensorflow.autolog(disable=True)`. Args: every_n_iter: deprecated, please use ``log_every_epoch`` instead. Per ``every_n_iter`` steps, metrics will be logged. log_models: If ``True``, trained models are logged as MLflow model artifacts. If ``False``, trained models are not logged. log_datasets: If ``True``, dataset information is logged to MLflow Tracking. If ``False``, dataset information is not logged. disable: If ``True``, disables the TensorFlow autologging integration. If ``False``, enables the TensorFlow integration autologging integration. exclusive: If ``True``, autologged content is not logged to user-created fluent runs. If ``False``, autologged content is logged to the active fluent run, which may be user-created. disable_for_unsupported_versions: If ``True``, disable autologging for versions of tensorflow that have not been tested against this version of the MLflow client or are incompatible. silent: If ``True``, suppress all event logs and warnings from MLflow during TensorFlow autologging. If ``False``, show all events and warnings during TensorFlow autologging. registered_model_name: If given, each time a model is trained, it is registered as a new model version of the registered model with this name. The registered model is created if it does not already exist. log_input_examples: If ``True``, input examples from training datasets are collected and logged along with tf/keras model artifacts during training. If ``False``, input examples are not logged. log_model_signatures: If ``True``, :py:class:`ModelSignatures <mlflow.models.ModelSignature>` describing model inputs and outputs are collected and logged along with tf/keras model artifacts during training. If ``False``, signatures are not logged. Note that logging TensorFlow models with signatures changes their pyfunc inference behavior when Pandas DataFrames are passed to ``predict()``. When a signature is present, an ``np.ndarray`` (for single-output models) or a mapping from ``str`` -> ``np.ndarray`` (for multi-output models) is returned; when a signature is not present, a Pandas DataFrame is returned. saved_model_kwargs: a dict of kwargs to pass to ``tensorflow.saved_model.save`` method. keras_model_kwargs: a dict of kwargs to pass to ``keras_model.save`` method. extra_tags: A dictionary of extra tags to set on each managed run created by autologging. log_every_epoch: If True, training metrics will be logged at the end of each epoch. log_every_n_steps: If set, training metrics will be logged every `n` training steps. `log_every_n_steps` must be `None` when `log_every_epoch=True`. checkpoint: Enable automatic model checkpointing. checkpoint_monitor: In automatic model checkpointing, the metric name to monitor if you set `model_checkpoint_save_best_only` to True. checkpoint_mode: one of {"min", "max"}. In automatic model checkpointing, if save_best_only=True, the decision to overwrite the current save file is made based on either the maximization or the minimization of the monitored quantity. checkpoint_save_best_only: If True, automatic model checkpointing only saves when the model is considered the "best" model according to the quantity monitored and previous checkpoint model is overwritten. checkpoint_save_weights_only: In automatic model checkpointing, if True, then only the model’s weights will be saved. Otherwise, the optimizer states, lr-scheduler states, etc are added in the checkpoint too. checkpoint_save_freq: `"epoch"` or integer. When using `"epoch"`, the callback saves the model after each epoch. When using integer, the callback saves the model at end of this many batches. Note that if the saving isn't aligned to epochs, the monitored metric may potentially be less reliable (it could reflect as little as 1 batch, since the metrics get reset every epoch). Defaults to `"epoch"`. """ import tensorflow as tf if every_n_iter != 1: _logger.warning( "The `every_n_iter` parameter is deprecated, please use `log_every_epoch` and " "`log_every_n_steps` instead. Automatically set `log_every_n_steps` to `every_n_iter`." ) log_every_epoch = False log_every_n_steps = every_n_iter if Version(tf.__version__) < Version("2.3"): _logger.error( "Could not log to MLflow because your Tensorflow version is below 2.3, detected " f"version: {tf.__version__}." ) return @picklable_exception_safe_function def _get_early_stop_callback(callbacks): for callback in callbacks: if isinstance(callback, tf.keras.callbacks.EarlyStopping): return callback return None def _log_early_stop_callback_params(callback): if callback: try: earlystopping_params = { "monitor": callback.monitor, "min_delta": callback.min_delta, "patience": callback.patience, "baseline": callback.baseline, "restore_best_weights": callback.restore_best_weights, } mlflow.log_params(earlystopping_params) except Exception: return def _get_early_stop_callback_attrs(callback): try: return callback.stopped_epoch, callback.restore_best_weights, callback.patience except Exception: return None def _log_early_stop_callback_metrics(callback, history): from mlflow import log_metrics if callback is None or not callback.model.stop_training: return callback_attrs = _get_early_stop_callback_attrs(callback) if callback_attrs is None: return stopped_epoch, restore_best_weights, _ = callback_attrs log_metrics({"stopped_epoch": stopped_epoch}, synchronous=False) if not restore_best_weights or callback.best_weights is None: return monitored_metric = history.history.get(callback.monitor) if not monitored_metric: return initial_epoch = history.epoch[0] # If `monitored_metric` contains multiple best values (e.g. [0.1, 0.1, 0.2] where 0.1 is # the minimum loss), the epoch corresponding to the first occurrence of the best value is # the best epoch. In keras > 2.6.0, the best epoch can be obtained via the `best_epoch` # attribute of an `EarlyStopping` instance: https://github.com/keras-team/keras/pull/15197 restored_epoch = initial_epoch + monitored_metric.index(callback.best) log_metrics({"restored_epoch": restored_epoch}, synchronous=False) restored_index = history.epoch.index(restored_epoch) restored_metrics = { key: metrics[restored_index] for key, metrics in history.history.items() } # Checking that a metric history exists metric_key = next(iter(history.history), None) if metric_key is not None: log_metrics(restored_metrics, stopped_epoch + 1, synchronous=False) def _log_keras_model(history, args): def _infer_model_signature(input_data_slice): # In certain TensorFlow versions, calling `predict()` on model may modify # the `stop_training` attribute, so we save and restore it accordingly original_stop_training = history.model.stop_training model_output = history.model.predict(input_data_slice) history.model.stop_training = original_stop_training return infer_signature(input_data_slice, model_output) from mlflow.tensorflow.autologging import extract_tf_keras_input_example def _get_tf_keras_input_example_slice(): input_training_data = args[0] keras_input_example_slice = extract_tf_keras_input_example(input_training_data) if keras_input_example_slice is None: raise MlflowException( "Cannot log input example or model signature for input with type" f" {type(input_training_data)}. TensorFlow Keras autologging can" " only log input examples and model signatures for the following" " input types: numpy.ndarray, dict[string -> numpy.ndarray]," " tensorflow.keras.utils.Sequence, and" " tensorflow.data.Dataset (TensorFlow >= 2.1.0 required)", INVALID_PARAMETER_VALUE, ) return keras_input_example_slice input_example, signature = resolve_input_example_and_signature( _get_tf_keras_input_example_slice, _infer_model_signature, log_input_examples, log_model_signatures, _logger, ) log_model( history.model, "model", input_example=input_example, signature=signature, registered_model_name=get_autologging_config( FLAVOR_NAME, "registered_model_name", None ), saved_model_kwargs=saved_model_kwargs, keras_model_kwargs=keras_model_kwargs, ) class FitPatch(PatchFunction): def __init__(self): self.log_dir = None def _patch_implementation(self, original, inst, *args, **kwargs): unlogged_params = ["self", "x", "y", "callbacks", "validation_data", "verbose"] batch_size = None try: is_single_input_model = isinstance(inst.input_shape, tuple) training_data = kwargs["x"] if "x" in kwargs else args[0] if isinstance(training_data, tf.data.Dataset) and hasattr( training_data, "_batch_size" ): batch_size = training_data._batch_size.numpy() elif isinstance(training_data, tf.keras.utils.Sequence): first_batch_inputs, *_ = training_data[0] if is_single_input_model: batch_size = len(first_batch_inputs) else: batch_size = len(first_batch_inputs[0]) elif is_iterator(training_data): peek = next(training_data) batch_size = len(peek[0]) if is_single_input_model else len(peek[0][0]) def __restore_generator(prev_generator): yield peek yield from prev_generator restored_generator = __restore_generator(training_data) if "x" in kwargs: kwargs["x"] = restored_generator else: args = (restored_generator,) + args[1:] except Exception as e: _logger.warning( "Encountered unexpected error while inferring batch size from training" " dataset: %s", e, ) if batch_size is not None: mlflow.log_param("batch_size", batch_size) unlogged_params.append("batch_size") log_fn_args_as_params(original, args, kwargs, unlogged_params) # Check if the 'callback' argument of fit() is set positionally if len(args) >= 6: # Convert the positional training function arguments to a list in order to # mutate the contents args = list(args) # Make a shallow copy of the preexisting callbacks to avoid permanently # modifying their contents for future training invocations. Introduce # TensorBoard & tf.keras callbacks if necessary callbacks = list(args[5]) callbacks, self.log_dir = _setup_callbacks( callbacks, log_every_epoch=log_every_epoch, log_every_n_steps=log_every_n_steps, ) # Replace the callbacks positional entry in the copied arguments and convert # the arguments back to tuple form for usage in the training function args[5] = callbacks args = tuple(args) else: # Make a shallow copy of the preexisting callbacks and introduce TensorBoard # & tf.keras callbacks if necessary callbacks = list(kwargs.get("callbacks") or []) kwargs["callbacks"], self.log_dir = _setup_callbacks( callbacks, log_every_epoch=log_every_epoch, log_every_n_steps=log_every_n_steps, ) early_stop_callback = _get_early_stop_callback(callbacks) _log_early_stop_callback_params(early_stop_callback) if log_datasets: try: context_tags = context_registry.resolve_tags() source = CodeDatasetSource(tags=context_tags) x = kwargs["x"] if "x" in kwargs else args[0] if "y" in kwargs: y = kwargs["y"] elif len(args) >= 2: y = args[1] else: y = None if "validation_data" in kwargs: validation_data = kwargs["validation_data"] elif len(args) >= 8: validation_data = args[7] else: validation_data = None _log_tensorflow_dataset(x, source, "train", targets=y) if validation_data is not None: _log_tensorflow_dataset(validation_data, source, "eval") except Exception as e: _logger.warning( "Failed to log training dataset information to " "MLflow Tracking. Reason: %s", e, ) history = original(inst, *args, **kwargs) if log_models: _log_keras_model(history, args) _log_early_stop_callback_metrics( callback=early_stop_callback, history=history, ) # Ensure all data are logged. # Shut down the async logging (instead of flushing) # to avoid leaving zombie threads between patchings. _shut_down_async_logging() mlflow.log_artifacts( local_dir=self.log_dir.location, artifact_path="tensorboard_logs", ) if self.log_dir.is_temp: shutil.rmtree(self.log_dir.location) return history def _on_exception(self, exception): if ( self.log_dir is not None and self.log_dir.is_temp and os.path.exists(self.log_dir.location) ): shutil.rmtree(self.log_dir.location) managed = [ (tf.keras.Model, "fit", FitPatch), ] for p in managed: safe_patch(FLAVOR_NAME, *p, manage_run=True, extra_tags=extra_tags)
def _log_tensorflow_dataset(tensorflow_dataset, source, context, name=None, targets=None): import tensorflow as tf # create a dataset if isinstance(tensorflow_dataset, np.ndarray): dataset = from_numpy(features=tensorflow_dataset, targets=targets, source=source, name=name) elif isinstance(tensorflow_dataset, tf.Tensor): dataset = from_tensorflow( features=tensorflow_dataset, targets=targets, source=source, name=name ) elif isinstance(tensorflow_dataset, tf.data.Dataset): dataset = from_tensorflow(features=tensorflow_dataset, source=source, name=name) elif isinstance(tensorflow_dataset, tuple): x = tensorflow_dataset[0] y = tensorflow_dataset[1] # check if x and y are tensors if isinstance(x, tf.Tensor) and isinstance(y, tf.Tensor): dataset = from_tensorflow(features=x, source=source, targets=y, name=name) else: dataset = from_numpy(features=x, targets=y, source=source, name=name) else: _logger.warning( "Unrecognized dataset type %s. Dataset logging skipped.", type(tensorflow_dataset) ) return mlflow.log_input(dataset, context)
[docs]def load_checkpoint(model=None, run_id=None, epoch=None, global_step=None): """ If you enable "checkpoint" in autologging, during Keras model training execution, checkpointed models are logged as MLflow artifacts. Using this API, you can load the checkpointed model. If you want to load the latest checkpoint, set both `epoch` and `global_step` to None. If "checkpoint_save_freq" is set to "epoch" in autologging, you can set `epoch` param to the epoch of the checkpoint to load specific epoch checkpoint. If "checkpoint_save_freq" is set to an integer in autologging, you can set `global_step` param to the global step of the checkpoint to load specific global step checkpoint. `epoch` param and `global_step` can't be set together. Args: model: A Keras model, this argument is required only when the saved checkpoint is "weight-only". run_id: The id of the run which model is logged to. If not provided, current active run is used. epoch: The epoch of the checkpoint to be loaded, if you set "checkpoint_save_freq" to "epoch". global_step: The global step of the checkpoint to be loaded, if you set "checkpoint_save_freq" to an integer. Returns: The instance of a Keras model restored from the specified checkpoint. .. code-block:: python :caption: Example import mlflow mlflow.tensorflow.autolog(checkpoint=True, checkpoint_save_best_only=False) model = create_tf_keras_model() # Create a Keras model with mlflow.start_run() as run: model.fit(data, label, epoch=10) run_id = run.info.run_id # load latest checkpoint model latest_checkpoint_model = mlflow.tensorflow.load_checkpoint(run_id=run_id) # load history checkpoint model logged in second epoch checkpoint_model = mlflow.tensorflow.load_checkpoint(run_id=run_id, epoch=2) """ import tensorflow as tf with TempDir() as tmp_dir: downloaded_checkpoint_filepath = download_checkpoint_artifact( run_id=run_id, epoch=epoch, global_step=global_step, dst_path=tmp_dir.path() ) fname = os.path.splitext(downloaded_checkpoint_filepath)[0] if fname.endswith(_WEIGHT_ONLY_CHECKPOINT_SUFFIX): # the model is saved as weights only if model is None: raise MlflowException( "The latest checkpoint is weights-only, 'model' argument must be provided" ) model.load_weights(downloaded_checkpoint_filepath) return model return tf.keras.models.load_model(downloaded_checkpoint_filepath)