import os
import tempfile
import types
import warnings
from contextlib import contextmanager
from typing import Any, Optional
import numpy as np
import yaml
import mlflow
import mlflow.utils.autologging_utils
from mlflow import pyfunc
from mlflow.models import Model, ModelInputExample, ModelSignature
from mlflow.models.model import MLMODEL_FILE_NAME
from mlflow.models.utils import _save_example
from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS
from mlflow.tracking.artifact_utils import _download_artifact_from_uri
from mlflow.utils.docstring_utils import LOG_MODEL_PARAM_DOCS, format_docstring
from mlflow.utils.environment import (
_CONDA_ENV_FILE_NAME,
_CONSTRAINTS_FILE_NAME,
_PYTHON_ENV_FILE_NAME,
_REQUIREMENTS_FILE_NAME,
_get_pip_deps,
_mlflow_conda_env,
_process_conda_env,
_process_pip_requirements,
_PythonEnv,
_validate_env_arguments,
)
from mlflow.utils.file_utils import write_to
from mlflow.utils.model_utils import (
_add_code_from_conf_to_system_path,
_get_flavor_configuration,
_validate_and_copy_code_paths,
_validate_and_prepare_target_save_path,
)
from mlflow.utils.requirements_utils import _get_package_name
from mlflow.utils.uri import append_to_uri_path
FLAVOR_NAME = "shap"
_MAXIMUM_BACKGROUND_DATA_SIZE = 100
_DEFAULT_ARTIFACT_PATH = "model_explanations_shap"
_SUMMARY_BAR_PLOT_FILE_NAME = "summary_bar_plot.png"
_BASE_VALUES_FILE_NAME = "base_values.npy"
_SHAP_VALUES_FILE_NAME = "shap_values.npy"
_UNKNOWN_MODEL_FLAVOR = "unknown"
_UNDERLYING_MODEL_SUBPATH = "underlying_model"
[docs]def get_underlying_model_flavor(model):
"""
Find the underlying models flavor.
Args:
model: underlying model of the explainer.
"""
# checking if underlying model is wrapped
if hasattr(model, "inner_model"):
unwrapped_model = model.inner_model
# check if passed model is a method of object
if isinstance(unwrapped_model, types.MethodType):
model_object = unwrapped_model.__self__
# check if model object is of type sklearn
try:
import sklearn
if issubclass(type(model_object), sklearn.base.BaseEstimator):
return mlflow.sklearn.FLAVOR_NAME
except ImportError:
pass
# check if passed model is of type pytorch
try:
import torch
if issubclass(type(unwrapped_model), torch.nn.Module):
return mlflow.pytorch.FLAVOR_NAME
except ImportError:
pass
return _UNKNOWN_MODEL_FLAVOR
[docs]def get_default_pip_requirements():
"""
A list of default pip requirements for MLflow Models produced by this flavor. Calls to
:func:`save_explainer()` and :func:`log_explainer()` produce a pip environment that, at
minimum, contains these requirements.
"""
import shap
return [f"shap=={shap.__version__}"]
[docs]def get_default_conda_env():
"""
Returns:
The default Conda environment for MLflow Models produced by calls to
:func:`save_explainer()` and :func:`log_explainer()`.
"""
return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements())
def _load_pyfunc(path):
"""
Load PyFunc implementation. Called by ``pyfunc.load_model``.
"""
return _SHAPWrapper(path)
@contextmanager
def _log_artifact_contextmanager(out_file, artifact_path=None):
"""
A context manager to make it easier to log an artifact.
"""
with tempfile.TemporaryDirectory() as tmp_dir:
tmp_path = os.path.join(tmp_dir, out_file)
yield tmp_path
mlflow.log_artifact(tmp_path, artifact_path)
def _log_numpy(numpy_obj, out_file, artifact_path=None):
"""
Log a numpy object.
"""
with _log_artifact_contextmanager(out_file, artifact_path) as tmp_path:
np.save(tmp_path, numpy_obj)
def _log_matplotlib_figure(fig, out_file, artifact_path=None):
"""
Log a matplotlib figure.
"""
with _log_artifact_contextmanager(out_file, artifact_path) as tmp_path:
fig.savefig(tmp_path)
def _get_conda_env_for_underlying_model(underlying_model_path):
underlying_model_conda_path = os.path.join(underlying_model_path, "conda.yaml")
with open(underlying_model_conda_path) as underlying_model_conda_file:
return yaml.safe_load(underlying_model_conda_file)
[docs]def log_explanation(predict_function, features, artifact_path=None):
r"""
Given a ``predict_function`` capable of computing ML model output on the provided ``features``,
computes and logs explanations of an ML model's output. Explanations are logged as a directory
of artifacts containing the following items generated by `SHAP`_ (SHapley Additive
exPlanations).
- Base values
- SHAP values (computed using `shap.KernelExplainer`_)
- Summary bar plot (shows the average impact of each feature on model output)
Args:
predict_function:
A function to compute the output of a model (e.g. ``predict_proba`` method of
scikit-learn classifiers). Must have the following signature:
.. code-block:: python
def predict_function(X) -> pred: ...
- ``X``: An array-like object whose shape should be (# samples, # features).
- ``pred``: An array-like object whose shape should be (# samples) for a regressor or
(# classes, # samples) for a classifier. For a classifier, the values in ``pred``
should correspond to the predicted probability of each class.
Acceptable array-like object types:
- ``numpy.array``
- ``pandas.DataFrame``
- ``shap.common.DenseData``
- ``scipy.sparse matrix``
features:
A matrix of features to compute SHAP values with. The provided features should
have shape (# samples, # features), and can be either of the array-like object
types listed above.
.. note::
Background data for `shap.KernelExplainer`_ is generated by subsampling ``features``
with `shap.kmeans`_. The background data size is limited to 100 rows for performance
reasons.
artifact_path:
The run-relative artifact path to which the explanation is saved.
If unspecified, defaults to "model_explanations_shap".
Returns:
Artifact URI of the logged explanations.
.. _SHAP: https://github.com/slundberg/shap
.. _shap.KernelExplainer: https://shap.readthedocs.io/en/latest/generated
/shap.KernelExplainer.html#shap.KernelExplainer
.. _shap.kmeans: https://github.com/slundberg/shap/blob/v0.36.0/shap/utils/_legacy.py#L9
.. code-block:: python
:caption: Example
import os
import numpy as np
import pandas as pd
from sklearn.datasets import load_diabetes
from sklearn.linear_model import LinearRegression
import mlflow
from mlflow import MlflowClient
# prepare training data
X, y = dataset = load_diabetes(return_X_y=True, as_frame=True)
X = pd.DataFrame(dataset.data[:50, :8], columns=dataset.feature_names[:8])
y = dataset.target[:50]
# train a model
model = LinearRegression()
model.fit(X, y)
# log an explanation
with mlflow.start_run() as run:
mlflow.shap.log_explanation(model.predict, X)
# list artifacts
client = MlflowClient()
artifact_path = "model_explanations_shap"
artifacts = [x.path for x in client.list_artifacts(run.info.run_id, artifact_path)]
print("# artifacts:")
print(artifacts)
# load back the logged explanation
dst_path = client.download_artifacts(run.info.run_id, artifact_path)
base_values = np.load(os.path.join(dst_path, "base_values.npy"))
shap_values = np.load(os.path.join(dst_path, "shap_values.npy"))
print("\n# base_values:")
print(base_values)
print("\n# shap_values:")
print(shap_values[:3])
.. code-block:: text
:caption: Output
# artifacts:
['model_explanations_shap/base_values.npy',
'model_explanations_shap/shap_values.npy',
'model_explanations_shap/summary_bar_plot.png']
# base_values:
20.502000000000002
# shap_values:
[[ 2.09975523 0.4746513 7.63759026 0. ]
[ 2.00883109 -0.18816665 -0.14419184 0. ]
[ 2.00891772 -0.18816665 -0.14419184 0. ]]
.. figure:: ../_static/images/shap-ui-screenshot.png
Logged artifacts
"""
import matplotlib.pyplot as plt
import shap
artifact_path = _DEFAULT_ARTIFACT_PATH if artifact_path is None else artifact_path
with mlflow.utils.autologging_utils.disable_autologging():
background_data = shap.kmeans(features, min(_MAXIMUM_BACKGROUND_DATA_SIZE, len(features)))
explainer = shap.KernelExplainer(predict_function, background_data)
shap_values = explainer.shap_values(features)
_log_numpy(explainer.expected_value, _BASE_VALUES_FILE_NAME, artifact_path)
_log_numpy(shap_values, _SHAP_VALUES_FILE_NAME, artifact_path)
shap.summary_plot(shap_values, features, plot_type="bar", show=False)
fig = plt.gcf()
fig.tight_layout()
_log_matplotlib_figure(fig, _SUMMARY_BAR_PLOT_FILE_NAME, artifact_path)
plt.close(fig)
return append_to_uri_path(mlflow.active_run().info.artifact_uri, artifact_path)
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def log_explainer(
explainer,
artifact_path,
serialize_model_using_mlflow=True,
conda_env=None,
code_paths=None,
registered_model_name=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
):
"""
Log an SHAP explainer as an MLflow artifact for the current run.
Args:
explainer: SHAP explainer to be saved.
artifact_path: Run-relative artifact path.
serialize_model_using_mlflow: When set to True, MLflow will extract the underlying
model and serialize it as an MLmodel, otherwise it uses SHAP's internal serialization.
Defaults to True. Currently MLflow serialization is only supported for models of
'sklearn' or 'pytorch' flavors.
conda_env: {{ conda_env }}
code_paths: {{ code_paths }}
registered_model_name: If given, create a model version under ``registered_model_name``,
also creating a registered model if one with the given name does not exist.
signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input
and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be
:py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input
(e.g. the training dataset with target column omitted) and valid model output
(e.g. model predictions generated on the training dataset), for example:
.. code-block:: python
from mlflow.models import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)
input_example: {{ input_example }}
await_registration_for: Number of seconds to wait for the model version to finish
being created and is in ``READY`` status. By default, the function waits for five
minutes. Specify 0 or None to skip waiting.
pip_requirements: {{ pip_requirements }}
extra_pip_requirements: {{ extra_pip_requirements }}
metadata: {{ metadata }}
"""
Model.log(
artifact_path=artifact_path,
flavor=mlflow.shap,
explainer=explainer,
conda_env=conda_env,
code_paths=code_paths,
serialize_model_using_mlflow=serialize_model_using_mlflow,
registered_model_name=registered_model_name,
signature=signature,
input_example=input_example,
await_registration_for=await_registration_for,
pip_requirements=pip_requirements,
extra_pip_requirements=extra_pip_requirements,
metadata=metadata,
)
[docs]@format_docstring(LOG_MODEL_PARAM_DOCS.format(package_name=FLAVOR_NAME))
def save_explainer(
explainer,
path,
serialize_model_using_mlflow=True,
conda_env=None,
code_paths=None,
mlflow_model=None,
signature: ModelSignature = None,
input_example: ModelInputExample = None,
pip_requirements=None,
extra_pip_requirements=None,
metadata=None,
):
"""
Save a SHAP explainer to a path on the local file system. Produces an MLflow Model
containing the following flavors:
- :py:mod:`mlflow.shap`
- :py:mod:`mlflow.pyfunc`
Args:
explainer: SHAP explainer to be saved.
path: Local path where the explainer is to be saved.
serialize_model_using_mlflow: When set to True, MLflow will extract the underlying
model and serialize it as an MLmodel, otherwise it uses SHAP's internal serialization.
Defaults to True. Currently MLflow serialization is only supported for models of
'sklearn' or 'pytorch' flavors.
conda_env: {{ conda_env }}
code_paths: {{ code_paths }}
mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to.
signature: :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input
and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be
:py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input
(e.g. the training dataset with target column omitted) and valid model output (e.g.
model predictions generated on the training dataset), for example:
.. code-block:: python
from mlflow.models import infer_signature
train = df.drop_column("target_label")
predictions = ... # compute model predictions
signature = infer_signature(train, predictions)
input_example: {{ input_example }}
pip_requirements: {{ pip_requirements }}
extra_pip_requirements: {{ extra_pip_requirements }}
metadata: {{ metadata }}
"""
import shap
_validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements)
_validate_and_prepare_target_save_path(path)
code_dir_subpath = _validate_and_copy_code_paths(code_paths, path)
if mlflow_model is None:
mlflow_model = Model()
if signature is not None:
mlflow_model.signature = signature
if input_example is not None:
_save_example(mlflow_model, input_example, path)
if metadata is not None:
mlflow_model.metadata = metadata
underlying_model_flavor = None
underlying_model_path = None
serializable_by_mlflow = False
# saving the underlying model if required
if serialize_model_using_mlflow:
underlying_model_flavor = get_underlying_model_flavor(explainer.model)
if underlying_model_flavor != _UNKNOWN_MODEL_FLAVOR:
serializable_by_mlflow = True # prevents SHAP from serializing the underlying model
underlying_model_path = os.path.join(path, _UNDERLYING_MODEL_SUBPATH)
else:
warnings.warn(
"Unable to serialize underlying model using MLflow, will use SHAP serialization"
)
if underlying_model_flavor == mlflow.sklearn.FLAVOR_NAME:
mlflow.sklearn.save_model(explainer.model.inner_model.__self__, underlying_model_path)
elif underlying_model_flavor == mlflow.pytorch.FLAVOR_NAME:
mlflow.pytorch.save_model(explainer.model.inner_model, underlying_model_path)
# saving the explainer object
explainer_data_subpath = "explainer.shap"
explainer_output_path = os.path.join(path, explainer_data_subpath)
with open(explainer_output_path, "wb") as explainer_output_file_handle:
if serialize_model_using_mlflow and serializable_by_mlflow:
explainer.save(explainer_output_file_handle, model_saver=False)
else:
explainer.save(explainer_output_file_handle)
pyfunc.add_to_model(
mlflow_model,
loader_module="mlflow.shap",
model_path=explainer_data_subpath,
underlying_model_flavor=underlying_model_flavor,
conda_env=_CONDA_ENV_FILE_NAME,
python_env=_PYTHON_ENV_FILE_NAME,
code=code_dir_subpath,
)
mlflow_model.add_flavor(
FLAVOR_NAME,
shap_version=shap.__version__,
serialized_explainer=explainer_data_subpath,
underlying_model_flavor=underlying_model_flavor,
code=code_dir_subpath,
)
mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME))
if conda_env is None:
if pip_requirements is None:
default_reqs = get_default_pip_requirements()
# To ensure `_load_pyfunc` can successfully load the model during the dependency
# inference, `mlflow_model.save` must be called beforehand to save an MLmodel file.
inferred_reqs = mlflow.models.infer_pip_requirements(
path,
FLAVOR_NAME,
fallback=default_reqs,
)
default_reqs = sorted(set(inferred_reqs).union(default_reqs))
else:
default_reqs = None
conda_env, pip_requirements, pip_constraints = _process_pip_requirements(
default_reqs,
pip_requirements,
extra_pip_requirements,
)
else:
conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env)
if underlying_model_path is not None:
underlying_model_conda_env = _get_conda_env_for_underlying_model(underlying_model_path)
conda_env = _merge_environments(conda_env, underlying_model_conda_env)
pip_requirements = _get_pip_deps(conda_env)
with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f:
yaml.safe_dump(conda_env, stream=f, default_flow_style=False)
# Save `constraints.txt` if necessary
if pip_constraints:
write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints))
# Save `requirements.txt`
write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements))
_PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME))
# Defining save_model (Required by Model.log) to refer to save_explainer
save_model = save_explainer
def _get_conda_and_pip_dependencies(conda_env):
"""
Extract conda and pip dependencies from conda environments
Args:
conda_env: Conda environment
"""
conda_deps = []
# NB: Set operations are required in case there are multiple references of MLflow as a
# dependency to ensure that duplicate entries are not present in the final consolidated
# dependency list.
pip_deps_set = set()
for dependency in conda_env["dependencies"]:
if isinstance(dependency, dict) and dependency["pip"]:
for pip_dependency in dependency["pip"]:
if pip_dependency != "mlflow":
pip_deps_set.add(pip_dependency)
else:
package_name = _get_package_name(dependency)
if package_name is not None and package_name not in ["python", "pip"]:
conda_deps.append(dependency)
return conda_deps, sorted(pip_deps_set)
def _union_lists(l1, l2):
"""
Returns the union of two lists as a new list.
"""
return list(dict.fromkeys(l1 + l2))
def _merge_environments(shap_environment, model_environment):
"""
Merge conda environments of underlying model and shap.
Args:
shap_environment: SHAP conda environment.
model_environment: Underlying model conda environment.
"""
# merge the channels from the two environments and remove the default conda
# channels if present since its added later in `_mlflow_conda_env`
merged_conda_channels = _union_lists(
shap_environment["channels"], model_environment["channels"]
)
merged_conda_channels = [x for x in merged_conda_channels if x != "conda-forge"]
shap_conda_deps, shap_pip_deps = _get_conda_and_pip_dependencies(shap_environment)
model_conda_deps, model_pip_deps = _get_conda_and_pip_dependencies(model_environment)
merged_conda_deps = _union_lists(shap_conda_deps, model_conda_deps)
merged_pip_deps = _union_lists(shap_pip_deps, model_pip_deps)
return _mlflow_conda_env(
additional_conda_deps=merged_conda_deps,
additional_pip_deps=merged_pip_deps,
additional_conda_channels=merged_conda_channels,
)
[docs]def load_explainer(model_uri):
"""
Load a SHAP explainer from a local file or a run.
Args:
model_uri: The location, in URI format, of the MLflow model. For example:
- ``/Users/me/path/to/local/model``
- ``relative/path/to/local/model``
- ``s3://my_bucket/path/to/model``
- ``runs:/<mlflow_run_id>/run-relative/path/to/model``
- ``models:/<model_name>/<model_version>``
- ``models:/<model_name>/<stage>``
For more information about supported URI schemes, see
`Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html#
artifact-locations>`_.
Returns:
A SHAP explainer.
"""
explainer_path = _download_artifact_from_uri(artifact_uri=model_uri)
flavor_conf = _get_flavor_configuration(model_path=explainer_path, flavor_name=FLAVOR_NAME)
_add_code_from_conf_to_system_path(explainer_path, flavor_conf)
explainer_artifacts_path = os.path.join(explainer_path, flavor_conf["serialized_explainer"])
underlying_model_flavor = flavor_conf["underlying_model_flavor"]
model = None
if underlying_model_flavor != _UNKNOWN_MODEL_FLAVOR:
underlying_model_path = os.path.join(explainer_path, _UNDERLYING_MODEL_SUBPATH)
if underlying_model_flavor == mlflow.sklearn.FLAVOR_NAME:
model = mlflow.sklearn._load_pyfunc(underlying_model_path).predict
elif underlying_model_flavor == mlflow.pytorch.FLAVOR_NAME:
model = mlflow.pytorch._load_model(os.path.join(underlying_model_path, "data"))
return _load_explainer(explainer_file=explainer_artifacts_path, model=model)
def _load_explainer(explainer_file, model=None):
"""
Load a SHAP explainer saved as an MLflow artifact on the local file system.
Args:
explainer_file: Local filesystem path to the MLflow Model saved with the ``shap`` flavor.
model: Model to override underlying explainer model.
"""
import shap
def inject_model_loader(_in_file):
return model
with open(explainer_file, "rb") as explainer:
if model is None:
explainer = shap.Explainer.load(explainer)
else:
explainer = shap.Explainer.load(explainer, model_loader=inject_model_loader)
return explainer
class _SHAPWrapper:
def __init__(self, path):
flavor_conf = _get_flavor_configuration(model_path=path, flavor_name=FLAVOR_NAME)
shap_explainer_artifacts_path = os.path.join(path, flavor_conf["serialized_explainer"])
underlying_model_flavor = flavor_conf["underlying_model_flavor"]
model = None
if underlying_model_flavor != _UNKNOWN_MODEL_FLAVOR:
underlying_model_path = os.path.join(path, _UNDERLYING_MODEL_SUBPATH)
if underlying_model_flavor == mlflow.sklearn.FLAVOR_NAME:
model = mlflow.sklearn._load_pyfunc(underlying_model_path).predict
elif underlying_model_flavor == mlflow.pytorch.FLAVOR_NAME:
model = mlflow.pytorch._load_model(os.path.join(underlying_model_path, "data"))
self.explainer = _load_explainer(explainer_file=shap_explainer_artifacts_path, model=model)
def get_raw_model(self):
"""
Returns the underlying model.
"""
return self.explainer
def predict(
self,
dataframe,
params: Optional[dict[str, Any]] = None,
):
"""
Args:
dataframe: Model input data.
params: Additional parameters to pass to the model for inference.
Returns:
Model predictions.
"""
return self.explainer(dataframe.values).values