mlflow.gluon
-
mlflow.gluon.
autolog
(log_models=True, log_datasets=True, disable=False, exclusive=False, disable_for_unsupported_versions=False, silent=False, registered_model_name=None)[source] Warning
mlflow.gluon.autolog
is deprecated since 2.5.0. This method will be removed in a future release.Note
Autologging is known to be compatible with the following package versions:
1.5.1
<=mxnet
<=1.9.1
. Autologging may not succeed when used with package versions outside of this range.Enables (or disables) and configures autologging from Gluon to MLflow. Logs loss and any other metrics specified in the fit function, and optimizer data as parameters. Model checkpoints are logged as artifacts to a ‘models’ directory.
- Parameters
log_models – If
True
, trained models are logged as MLflow model artifacts. IfFalse
, trained models are not logged.log_datasets – If
True
, dataset information is logged to MLflow Tracking. IfFalse
, dataset information is not logged.disable – If
True
, disables the MXNet Gluon autologging integration. IfFalse
, enables the MXNet Gluon autologging integration.exclusive – If
True
, autologged content is not logged to user-created fluent runs. IfFalse
, autologged content is logged to the active fluent run, which may be user-created.disable_for_unsupported_versions – If
True
, disable autologging for versions of gluon that have not been tested against this version of the MLflow client or are incompatible.silent – If
True
, suppress all event logs and warnings from MLflow during MXNet Gluon autologging. IfFalse
, show all events and warnings during MXNet Gluon autologging.registered_model_name – If given, each time a model is trained, it is registered as a new model version of the registered model with this name. The registered model is created if it does not already exist.
-
mlflow.gluon.
get_default_conda_env
()[source] - Returns
The default Conda environment for MLflow Models produced by calls to
save_model()
andlog_model()
.
-
mlflow.gluon.
get_default_pip_requirements
()[source] - Returns
A list of default pip requirements for MLflow Models produced by this flavor. Calls to
save_model()
andlog_model()
produce a pip environment that, at minimum, contains these requirements.
-
mlflow.gluon.
load_model
(model_uri, ctx, dst_path=None)[source] Warning
mlflow.gluon.load_model
is deprecated since 2.5.0. This method will be removed in a future release.Load a Gluon model from a local file or a run.
- Parameters
model_uri –
The location, in URI format, of the MLflow model. For example:
/Users/me/path/to/local/model
relative/path/to/local/model
s3://my_bucket/path/to/model
runs:/<mlflow_run_id>/run-relative/path/to/model
models:/<model_name>/<model_version>
models:/<model_name>/<stage>
For more information about supported URI schemes, see Referencing Artifacts.
ctx – Either CPU or GPU.
dst_path – The local filesystem path to which to download the model artifact. This directory must already exist. If unspecified, a local output path will be created.
- Returns
A Gluon model instance.
# Load persisted model as a Gluon model, make inferences against an NDArray model = mlflow.gluon.load_model("runs:/" + gluon_random_data_run.info.run_id + "/model") model(nd.array(np.random.rand(1000, 1, 32)))
-
mlflow.gluon.
log_model
(gluon_model, artifact_path, conda_env=None, code_paths=None, registered_model_name=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix, csc_matrix, str, bytes, tuple] = None, pip_requirements=None, extra_pip_requirements=None, metadata=None)[source] Warning
mlflow.gluon.log_model
is deprecated since 2.5.0. This method will be removed in a future release.Log a Gluon model as an MLflow artifact for the current run.
- Parameters
gluon_model – Gluon model to be saved. Must be already hybridized.
artifact_path – Run-relative artifact path.
conda_env –
Either a dictionary representation of a Conda environment or the path to a conda environment yaml file. If provided, this describes the environment this model should be run in. At a minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, a conda environment with pip requirements inferred bymlflow.models.infer_pip_requirements()
is added to the model. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. pip requirements fromconda_env
are written to a piprequirements.txt
file and the full conda environment is written toconda.yaml
. The following is an example dictionary representation of a conda environment:{ "name": "mlflow-env", "channels": ["conda-forge"], "dependencies": [ "python=3.8.15", { "pip": [ "mxnet==x.y.z" ], }, ], }
code_paths –
A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are prepended to the system path when the model is loaded. Files declared as dependencies for a given model should have relative imports declared from a common root path if multiple files are defined with import dependencies between them to avoid import errors when loading the model.
For a detailed explanation of
code_paths
functionality, recommended usage patterns and limitations, see the code_paths usage guide.registered_model_name – If given, create a model version under
registered_model_name
, also creating a registered model if one with the given name does not exist.signature –
an instance of the
ModelSignature
class that describes the model’s inputs and outputs. If not specified but aninput_example
is supplied, a signature will be automatically inferred based on the supplied input example and model. To disable automatic signature inference when providing an input example, setsignature
toFalse
. To manually infer a model signature, callinfer_signature()
on datasets with valid model inputs, such as a training dataset with the target column omitted, and valid model outputs, like model predictions made on the training dataset, for example:from mlflow.models import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions)
input_example – one or several instances of valid model input. The input example is used as a hint of what data to feed the model. It will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format, or a numpy array where the example will be serialized to json by converting it to a list. Bytes are base64-encoded. When the
signature
parameter isNone
, the input example is used to infer a model signature.pip_requirements – Either an iterable of pip requirement strings (e.g.
["mxnet", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes the environment this model should be run in. IfNone
, a default list of requirements is inferred bymlflow.models.infer_pip_requirements()
from the current software environment. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.extra_pip_requirements –
Either an iterable of pip requirement strings (e.g.
["pandas", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes additional pip requirements that are appended to a default set of pip requirements generated automatically based on the user’s current software environment. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.Warning
The following arguments can’t be specified at the same time:
conda_env
pip_requirements
extra_pip_requirements
This example demonstrates how to specify pip requirements using
pip_requirements
andextra_pip_requirements
.metadata – Custom metadata dictionary passed to the model and stored in the MLmodel file.
- Returns
A
ModelInfo
instance that contains the metadata of the logged model.
from mxnet.gluon import Trainer from mxnet.gluon.contrib import estimator from mxnet.gluon.loss import SoftmaxCrossEntropyLoss from mxnet.gluon.nn import HybridSequential from mxnet.metric import Accuracy import mlflow # Build, compile, and train your model net = HybridSequential() with net.name_scope(): ... net.hybridize() net.collect_params().initialize() softmax_loss = SoftmaxCrossEntropyLoss() trainer = Trainer(net.collect_params()) est = estimator.Estimator( net=net, loss=softmax_loss, metrics=Accuracy(), trainer=trainer ) # Log metrics and log the model with mlflow.start_run(): est.fit(train_data=train_data, epochs=100, val_data=validation_data) mlflow.gluon.log_model(net, "model")
-
mlflow.gluon.
save_model
(gluon_model, path, mlflow_model=None, conda_env=None, code_paths=None, signature: mlflow.models.signature.ModelSignature = None, input_example: Union[pandas.core.frame.DataFrame, numpy.ndarray, dict, list, csr_matrix, csc_matrix, str, bytes, tuple] = None, pip_requirements=None, extra_pip_requirements=None, metadata=None)[source] Warning
mlflow.gluon.save_model
is deprecated since 2.5.0. This method will be removed in a future release.Save a Gluon model to a path on the local file system.
- Parameters
gluon_model – Gluon model to be saved. Must be already hybridized.
path – Local path where the model is to be saved.
mlflow_model – MLflow model config this flavor is being added to.
conda_env –
Either a dictionary representation of a Conda environment or the path to a conda environment yaml file. If provided, this describes the environment this model should be run in. At a minimum, it should specify the dependencies contained in
get_default_conda_env()
. IfNone
, a conda environment with pip requirements inferred bymlflow.models.infer_pip_requirements()
is added to the model. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. pip requirements fromconda_env
are written to a piprequirements.txt
file and the full conda environment is written toconda.yaml
. The following is an example dictionary representation of a conda environment:{ "name": "mlflow-env", "channels": ["conda-forge"], "dependencies": [ "python=3.8.15", { "pip": [ "mxnet==x.y.z" ], }, ], }
code_paths –
A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are prepended to the system path when the model is loaded. Files declared as dependencies for a given model should have relative imports declared from a common root path if multiple files are defined with import dependencies between them to avoid import errors when loading the model.
For a detailed explanation of
code_paths
functionality, recommended usage patterns and limitations, see the code_paths usage guide.signature –
an instance of the
ModelSignature
class that describes the model’s inputs and outputs. If not specified but aninput_example
is supplied, a signature will be automatically inferred based on the supplied input example and model. To disable automatic signature inference when providing an input example, setsignature
toFalse
. To manually infer a model signature, callinfer_signature()
on datasets with valid model inputs, such as a training dataset with the target column omitted, and valid model outputs, like model predictions made on the training dataset, for example:from mlflow.models import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions)
input_example – one or several instances of valid model input. The input example is used as a hint of what data to feed the model. It will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format, or a numpy array where the example will be serialized to json by converting it to a list. Bytes are base64-encoded. When the
signature
parameter isNone
, the input example is used to infer a model signature.pip_requirements – Either an iterable of pip requirement strings (e.g.
["mxnet", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes the environment this model should be run in. IfNone
, a default list of requirements is inferred bymlflow.models.infer_pip_requirements()
from the current software environment. If the requirement inference fails, it falls back to usingget_default_pip_requirements()
. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.extra_pip_requirements –
Either an iterable of pip requirement strings (e.g.
["pandas", "-r requirements.txt", "-c constraints.txt"]
) or the string path to a pip requirements file on the local filesystem (e.g."requirements.txt"
). If provided, this describes additional pip requirements that are appended to a default set of pip requirements generated automatically based on the user’s current software environment. Both requirements and constraints are automatically parsed and written torequirements.txt
andconstraints.txt
files, respectively, and stored as part of the model. Requirements are also written to thepip
section of the model’s conda environment (conda.yaml
) file.Warning
The following arguments can’t be specified at the same time:
conda_env
pip_requirements
extra_pip_requirements
This example demonstrates how to specify pip requirements using
pip_requirements
andextra_pip_requirements
.metadata – Custom metadata dictionary passed to the model and stored in the MLmodel file.
from mxnet.gluon import Trainer from mxnet.gluon.contrib import estimator from mxnet.gluon.loss import SoftmaxCrossEntropyLoss from mxnet.gluon.nn import HybridSequential from mxnet.metric import Accuracy import mlflow # Build, compile, and train your model gluon_model_path = ... net = HybridSequential() with net.name_scope(): ... net.hybridize() net.collect_params().initialize() softmax_loss = SoftmaxCrossEntropyLoss() trainer = Trainer(net.collect_params()) est = estimator.Estimator( net=net, loss=softmax_loss, metrics=Accuracy(), trainer=trainer ) est.fit(train_data=train_data, epochs=100, val_data=validation_data) # Save the model as an MLflow Model mlflow.gluon.save_model(net, gluon_model_path)